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The problem of the motion of a material system, consisting of a supporting rigid body, bounded by a surface and rolling on another
moving surface, and a set of supported point masses, the position of which with respect to this body can be specified by a finite
number of generalized coordinates, is considered using methods described previously in [1-3]. © 2004 Elsevier Ltd. All rights
reserved.

1. THE KINEMATIC PROPERTIES OF THE MOTION

We begin our study of the material system considered by describing the notation and by considering
the kinematic properties. We introduce a system of rectangular coordinates Oxyz(iy, i, and i; are the
unit vectors of the axes) and O.xyZ° (if, i5 and i§ are the unit vectors of the axes), permanently connected
with the supporting rigid body and with the surface-base respectively (all systems of coordinates are
left systems). This enables us to define the position of the supporting body with respect to the surface-
base S by the coordinates x§, y§, 2§ of the point O in the axes O x°y°z° and the Euler angles ¢, y, 6 (pure
rotation, precession and nutation) between the axes introduced, and the position of the system of
supported point masses M; with respect to the supporting body (with respect to the axes Oxyz) — by
certain generalized coordinates ol, ..., o". We denote the projections of the vector of the velocity
of the point O and the vector of the angular velocity of the supporting body @ onto the Oxyz axes by
k, 1, m and p, g, r. We stipulate that the subscript of the radius vector, having its origin at the point O,,
0., O and C,, and its projections onto the axes O,x"y*z*, O xy°z, Oxyz and C,xy’Z" respectively, is the
symbol of the end of the radius vector, while the superscript is the symbol of its origin O,, O,, O and
C, (the symbol of the system of coordinates O,x"y*2*, O .xy2°, Oxyz and C,xy7).

We will assume further that r{ and r§ are the radius vectors, which fix the position of the points M;
and O on the axes O.x°"z%, while r; and r are the radius vectors which fix the position of the points M;
and C (C is the centre of inertia of the system) on the axes Oxyz; hence we obtain

(4 c, c.c ¢ 1 n
l‘,- = ro(xOy0Z0)+ l',((l 5 eeny O )

We will now assume® that the surface-base S° moves, and its motion (the motion of the system of
coordinates O, xyz¢ permanently connected with it) with respect to the fixed system of coordinates
0,xy'2" (if, i} and i are the orthonormalized vectors of the axes) is known, i.e. the radius vector
1o, = 15, + i, + i320, of the point O, with origin at the point O, and the parameters (the generalized
coordinates), defining the orientation of the axes O, xy°z° with respect to the axes O,x"y"2” (for example,
the Euler angles ¢, y,, 6,) are specified as functions of time.
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Further introducing the radius vector p with the origin at the point O and the Gaussian coordinates
1 ¢* for points of the surface S, bounding the supporting body, we will specify its equation in the form

p= P(ql» qz) (P = -Xil +yi2 +Zi3),

while the coefficients of the first two quadratic forms will be denoted by ay;, a5y, b1y, and by, (for simplicity
we will assume that the coordinate lines of the surface are lines of curvature) At the contact point M
we will attach to the surface S the moving frame of reference Mq'q’n with the unit vectors directed
along the tangent to the coordinate lines and the normal

1 1

—pse='—-pa
Jan 7 Jan

We will denote the projections of the vectors r- and p onto the axis of this frame of reference by

e‘= e3=

1 d
) (e )
oo P XP, Po aun

1
Sono ot = _Lp'ai n= —P-a-e, e(p’=x"+y*+2")

Jay, dq' ay, dq

We w1ll 1ntroduce the cosines of the angles between the axes 0,x*y"z" and O x°y“Z°, between the axes
0,x°z* and Mglq?n, and also between the axes Mg'g*n and Oxyz

o if + oyi; + o

it

l.a l.a l.a
= Li| + myiy + ngi,,

c

1
o _ 2, a2 . . aus
iy = Lif+mi3+n,i5, €5 = Bij +B,i; + Bli;

(1.1)
l il + m 12 + nsl‘;, e3 = 'Ycll +Ycl2 +Yci3

i3

i, = oe, +Pe,+vey, i, = o'e; +P'e;+7'e;, iy = a'e +f"e,+7"e,

All that has been stated here for the surface S, which bounds the supporting body, also holds for the
surface-base S° (the corresponding values are denoted by the same letters but with an index ¢). Further,
followmig Voronets, we will define the position of the supporting body by generalized coordinates
4, ¢% q., g% and © (the ﬁrst four quantities are the Gaussian coordinates of the point M, and ¥ is the
angle between the axes ¢' and ¢ at the same pornt) while the posmon of the whole system, consequently,
will be defined by the generalized coordinates ¢', ¢°, 4., 42, 9, o, ..., o
The projections K., /. and m,, of the velocity vo, of the point O, onto the O.x%Z° axes will be as follows:

o 1.a 1.a 1.a
k=i vo = L +mgyo +ngip (12)

where /. and m, are obtained from relations (1.2) by replacing the superscript 1 by 2 and 4, while the
projections p., q. and 7. of the angular velocity vector w, of the surface-base onto the axes OCxcycz‘ are
given by known formulae [3, formulae (2.9.3)], where we must replace ¢, y, 6 by @, y,, 6.).

For the projections of the velocity j = vy, + @, x p° of a point the surface-base S°, coinciding at the

given instant with the contact point M, onto the axes if, i5, i§ and ef, €5, €5, we correspondingly obtain
o fi+a.f,+0.f;
B.fi+Bef2+Bcfs (1.3)
mc+pcyc*qcxc’ b3 = e; j = chl +Y::f2+‘Y:f3

fl = kc+qczc_rtyc’ bl = ei'j

c ¢ c .
f2=lc+rcx - P, b2=e2'-'

f3

where fl, fa 1, b1, b, b3 are functions of t, g1, ¢2. Flnally, we obtain as functions of 7, CIc, qc, ¥ the projections
J1»J2,J3 of the vector j onto the axes of the moving frame of reference Mq'q’n (jx occurs in the equation
of motion)

j‘ = iblsinﬁ"‘bzcosﬁ, j2 = :Fblcosﬁ+b28in13, j3 = ib3
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Here we have used the formulae
e, = tesind+e;cos¥, e, = Fejcosd+ejsind, e; = te; (1.4)

We w1ll put anx above a Vector as the symbol of the derivative of the vector in the system of coordinates
O.xyz° with respect to time: p° (as similarly done by Lur’ye [3], who used an asterisk). The absolute
velocity of the contact point (see [3, pp- 81 and 88]) can be written in the form

abs
VM

abs * * 3 1 .2
Vy = Vo+OXp+p, P =p4 = e jaygd +e;./an]

¢ Xc X c .0 c [c .1 c [ e .2
Vo + @ XP +P, P = Pod. = €14ay g, + €4 a5], (1.5)

This gives

¢, Xe *
Vo, + @ X P +P° = Vo+xXp+p

We will introduce a vector U in the plane of the axes e, e,

X”—*|3=vo+wxp-v0c—o)cxp”=l—) (1.6)
Hence (®=U +j)
Vo = [U+(vp +0 xp)l-@xp = D®-0xp 1.7

There is no slipping at the point M (vg + @ X p — v, — w, X p, = 0), and hence we obtain equations of
non-holonomic constraint (we project the vector U = §° — p = 0 onto the axes e;, and e,)

Ul =+ aflqlsim?+ agzqicosﬁ— andl =0
| (1.8)
U = 5 .Ja5 g cos® + agzqzsim‘)—,\/azzqz =0

We can represent the angular velocity o of the supporting rigid body and the vector of an infinitesimal
rotation @ of this body as [1, p. 804]

0=+, +0;+0, 0=0+0,+0,+0, 1.9

The vector w, has projections p,, g, r. (as also ¢., ¥, 6,), which are specified functions of time, and
hence, at a fixed instant of time, the vector of an infinitesimal rotation 0, = 0.

Hence, from formulae (1.7) and (1.8) of [1] we obtain expressions for the projections of the angular
velocity of the supporting body onto the e; axis of the mobile frame of reference (here and henceforth
the upper (lower) sign denotes the case e; = €5 (e; = —€5))

b b5 b,
Ul=o = —-2—2q2i 2 2s1m‘)— qccosﬁ+

,[a , ,

t(p, 0, +q.0,. +r.0)sin® + (p B, +q.B. +rP;)cosd

b
ter = ALy qcsmﬁq: 2 g2cosd+

Jan” JZzT J’ (1.10)

+(pB.+q.B.+rB.)sind F(p.o, +q.0+r.0)cos

s 1 day; ., day 1 aail 1 day ,
U=n=——=|\—54-—54 |F—/—| =549~ —74: |~
2,jay a2\ 9q dq 2./al, a5\ 94 94,

U

_6 t (chc + ch'c + rcY'c:)
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We similarly obtain the projections of the vector 8 = 81°%¢, + 8V'%, + 8%,

b b, b
oV = -2 q2 2 5q’sin 1L 8q. cos®
b
vt = LU 6 2c0s®

—L-8g, si
Ja JZ J_
) da] da;
SV° = 1 (aaus ‘1228 ) 1 ( ‘1118 azlzaqgj_
2 a|1a22 aq aq 2 allazz aqc aqt

Using equations of the constraint (1.8), expressions (1.10) can be converted to the form

B 2 .1 2
6 =-ApJang —Apfand +A, T = Ayjaq +4,y0ad +B
. 1 2
n= —ﬂ‘f’A“/allq _Azafazzq +C

(1.11)

where
A = to_sind +1.c080, O, = p.O,. +q. 0 +7.0,

B = ¥o,cosV + 1T 5ind, 1T, = ..

C=1n, n,=pY.+qV.+1Y.

b, b}, . 2 by - by by 2. b}, 2
Ay = —H:F%sm ﬁ;%cos O, Ay = E;Tsm 9 F —cos" ¥
all a” 022 a22 a22 a"

2A1 = -
Jay 3¢" [z, 3 J;?l 9,
2N, = 1 alnazz slnﬂalnazz cosﬂalnail
, =
Jay 3g' j; 80t Ju, o4
bc bC
Ap=A4Ay = 4{—32 - —%'v]sim‘)cosﬁ
ay an

We point out the following formulae
p=0o+tf+ny, qg=oca'+1p +ny, r=oca"+1p"+ny"

From relations (1.8) and (1.10) we further determme the expressions for ¢, 4% 4., 42 and ® in terms
of the quasi-velocity (the terms with U' and U? are not written out)

q.l _ 1
JauR
,1 1 ,2 1
9e = = (Ocip+Tcp—Aci; - Bey), ¢, =-
,,/aud agzd

d=-n+ (" A) (A8, + Ay Ay - = B)(A22A1+A2,A2)+C

(cAlz + TAZZ - AA12 - BA22), qz = -

1
JaxR

(0cyy + Ty —Acy ~ Bey) (1.12)
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Here

2
d = cpyep—cpey =R, R=AjAn-Aj

by, _b; b, b}
iy = —“¥—§2 cos®, ¢y = |+ -2 |sing (1.13)
a4 a, a1 aj,
by, _ b} by, b}
Cyp = —22;'%2 sin®, Cyy = - ——2%—'—E cost
, 922 a,, 42 aj,

Finally, we obtain, from well-known formulae (see [3, p. 160]) and formula (1.6), an expression for
the kinetic energy 7' of the system considered, derived without taking into account the equations of
the constraint

2T = Mv(2,+2Mv0-(mer)+m-60-(o+2(v0-Q,+u)-K?)+ Em,.vf =
i=1
= M<I>2—2M<I>-(n)xp)+vw-@0-w+Mpza)2—M(p-(o)2+

+2M® - (@ X1) - 2Mrc- [po’ - o(o - p)]+

N
+20-Q,+20 - (Q,xp+K))+ ¥ mv} = MU +2U - j+ ]~ (1.14)

i=1
—2M[U-(wxp)+j-(mxp)]+(o-90-w+Mp2w2—M(p-m)2+
+2M[U-(cT)xi'C)+j-(wer)]~2MrC-[pmz—o)(o)-p)]+

N
+2[U-Q,+j-Q1+20 - (Q,xp+K))+ ¥ mvl(v,= )

i=1

and an expression for ©’, derived taking into account the equations of the constraint for U = (.

We will denote the vector with projections 90'/0U°, 00'/dU*, 9©'/dU° onto the axis Mg'q’n by
m’'. The expressions for the kinetic energy of the system 7" = T + 77, ®' = © + ©" and the vector
m’ = m + m" can be split into two terms, where

2T" = 2§(MU +Q,) + Mj* +2Mj - [(® X 1) - (@ X p)]

20" = 2§-Q,+Mj’*+2Mj - [(® X1) - (@ X p)] (1.15)
m' = -MPx)+Mx:xj)

The expression for 27 is given by formula (2.9) in [1], where we must replace by new notation: U
and

m=0°. o)+Mp2(o—M(p ‘)P -2M(r.- plo+
(1.16)
+Mo - r)p+ M- pire+Q . x p+K?

Incidentally, if we are given the vectors

p = xil + yiz + Zia, el = (X.il + aliz + (!"i3

Jx ity i+, s

o = pi,+qi,+riy, j
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we have
Qﬂz"aiai]+...+—az§i3’ ai;:ggail*' "+(1(%i3
aqa dq dq dq dq 9q (1.17)
a(l) = a_lilil+"'+-a_’;-1i3’ a‘l = —a-‘l—;il'f'.--""?_.’f;i:«)
dq" dq 9" 3 %

2. THE EQUATIONS OF MOTION
Now, taking expressions (1.10) and (1.8) as the quasivelocities

U'=d, V'=d, Ul=0, U'=1 U'=n &, . &
and denoting the corresponding variations of the quasicoordinates by 8V, 8o¢* using the Euler—Lagrange
equations we can derive the equations of motion of the system, following Lar’ye [3]. Proceeding as in
[1] using the notation and calculations used there, we obtain that only the following symbols I" and €
are non-zero.

[ = -Ts; =%, Tus=-Ty=%; s=12

s _ Aslnc GS _ AJch 8; - —KiA-—K;B (21)

83— d, 4 d’

3 3 3 3 3
My =-Ts3=¢q;, Tgs=-Ty=-1+q, Iyy=-TyH=-n

4 4 4
[ =-Tgg=1-p;, Ty = T4 = -py Ty =- @8 =N

22)

e+1

5
Iy =-Ty=p+q-1 or F;p='Ya+|p+1
3 3 4 4
€=, & =4q;, €3 =Tr; &= -py, 93 =43, € = P

where K, are the projections of K, = (Ayi/R)e; + (Ag/R)e; (0 = 1, 2) onto the e; and e, axes, Y}, are
the triple-index symbols from [1] and d = ¢y1¢ — 12621 = %R, py, Gi, 1, are the coefficients in the formulae

61 = plU3+p2lj4+p3, Tl = q1U3+q2l]4+q3, nl = rlU3+r2U4+r3

Although the expressmns obtained here for the quasi velocities are more complex than those of Lar’ye
[3, p. 35], the symbols Iy, g, (s, £, 9 = 1, . = 5), as before, are defined by formulae (1.8.2) and
(1 8.5) from [3], where the summation is carned out from 1 to m and, principally, all the symbols r‘,‘q,
g, in which one of indices exceeds m = 5 are equal to zero, and hence the equatlons of motion split
1nto a group of Euler-Lagrange equatlons for the quasi velocities U°, U* and U° and a group of Lagrange
equations for the coordinates o, ... , o"

doe' r, ar oT" r .
) = = P 2.3
dtau ,Z,,Zs z 10U ¢ av* ¢ @3
do®' 90
———-—=0; k=345 s=1,..,n 24
drye’ oo @4
The equations of motion of the supporting body (2.3) have the form (O = Q, - &)
d 00’ 720 20’
190 +(t- t) —(n n,)a—-+

+MI(E-E0)T- (N -)0)Jand” + (Mjs +Q,3) Jand’ -
— (@23 — Qp3dn) + MI(nE — 0€) j; - (01 - 1E) j5] -

-M[(n€c-0¢€c)j3 - (ONc-1E0)i] = P3
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d 00’ 1) 12}
EF"‘(”""D%—(G—GOW- 2.5)

~MI(E-E)T-(M=-N)0)Jangd' - (Mis+Q,3) Jand' -

— (@31 = @nj3) + Ml(om - 18)j, — (T8 —nm) j3] -
-M[(onc-1€c)j; - (tec—nn()jsl = P,

‘%%Gnl +(6- o,)%%-' - (1—1,)‘3—96' +M(e-e0)(Jay 4 0 + Japd't) -
~MIE-Ec)fand' + (M -N) Jand'In-(Mj; + Q,)) Jand’ +

+(Mjy+ Q) Jand' = (Qniin - Qi) +

+ M[(1€ - 1) j, — (n& — 0€)jy ] - MI(Tec —m)j, - (nEc - 0€)jy] = Py

The virtual displacement of any point M; of the system will be [3, p. 428]

n
ar;
8r{ = drg+9dr; = drg+ » —da’+0xr,

s=1

The elementary work of all the active forces, applied both to the supporting and the supported bodies,
on the virtual displacement of points of the system is

; . a " ar,
W= Y F, - 8rf = Y F(drg+0xr)+ Y F{; aatsaas] -
i=1

i=1 =1

i=1

n N
=F-5ri+m’ . 0+ Z(ZF,—aa—ri]ﬁar
o

s=l\i=1

where F is the principal vector and m” is the principal moment of all the active forces about the pole
O. In the general case, each force F; is the sum of a potential force F;, and a non-potential force F,.
Taking the equation of non-holonomic constraint into account, we obtain from (1.6)

Srg+0xp-8rg —0,xp° =0 (2.6)

Since 0, = 0, 3}, = 0, we have 8rj = p X 0, whence

n N
SW =F-(px0)+m°-0+ Z[ZFii—?-r—iJaa’ =
o

s=1\i=1

2.7)
n N
= (m%-pxF) - (8V’e, +5V'e,+5Ve)+ 3 (2 Figr—‘;JSa‘

i=1 0O

s=1

On the other hand, §'W is expressed in terms of generalized forces, referred to the quasicoordinates
V3, V* and V° and to the generalized coordinates o*

5 n
2.8
§W = Y Pav+ Y 080 28
k=3 s=1
Comparing ex?ressions (2.7) and (2.8) we find that the quantities P3, P; and P are the projections

onto the axis Mq'q'n of the principal moment of the active forces (applied both to the supporting and
the supported bodies) about the contact point M
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Py, =m" ek=123m"=m’-pxF), Q ZF

i=1

Carrying out the above calculatrons separately for the forces F;, (and the forces F,,), we obtain that
the quantities dU/0V>, oU/dV*, 9U/dV, which have the form (2. 14) from [1, p. 809] (and the generalized
forces P3,,, P, and P%,, produced by the non-potential forces F;,), are respectively the projections onto
the Mq'q'n axis of the principal moment of the active potential forces (the active non-potential forces)
about the contact point M. Also P = dU/QV* + P}, (k = 3,4, 5).

For a fixed surfaces 5° (j = 0) the equations of motion of the supportion body (2.5) are identical with
Eqs (2.12) and (2.13) from [1}. In vector form, these equations are

‘%[@0 -+ Mpzu) -M(p-@)p-2M(rc-p)o+ M(® - p)rc+

+ M@ -r)p+Q,xp+KS-M(pxj)+Mrsxj)l+ (2.9)

+|’;><M[(p—rc)xm+:-'c+j]—(M:ij)+M[(ox(p-rC)]xj =m"

Thus, if the motion of the supported bodies ith respect to the supporting body is specified or there
are generally no relative motions, we have obtained a closed system of erght d1fferent1a1 equations (1.8),
(1.10) and (2.5) for determining the generalrzed coordinates ¢, q 9, ¢, ¢* and the quantities o, T, n
as functions of time. In general, this system is not closed and for a complete solution of the problem
—to determine the generalized coordinates g, q2 B, qi, qe, O, 1, , o and the quantities &, T, # as functions

of time, we must add the equations of motion of the supported bodies (2.4) to Eqgs (1.8), (1.10) and
(2.5). Omitting the derivation, which can be found in [3, p. 433], we will immediately write Eqs (2.4)
in the converted form

e(T,) = Q;—M[(j+pxw)*+wx(j+px(,,)].ZL5+
a

(2.10)
0 oK’

+lm-a—®—-w-(b-—f—co-e;"(Kf’), s=1,..,n

2" o0

If the motion of the surface S¢ is specified, and the set of supported point masses is a rigid body, the
equations of motion of supported body willbe (s = 1,2, 3; k = 4, 5, 6; [1, p. 811] and [3, pp. 454—458])

Jre i kL0 o 0
Mrwcr-aa:' = Qs(v0=j+p><(x),(l),= Zeka,ﬂ =90+®r
k=4

C c c c
e}c~[Of’-z),+a),x0,c’-w,+@,’~z)+mx9,’-m+2m,x(6,’—lEﬁ,’)-mJ = O

o ¢
@r = @r + M'.(Ercr . I‘C' - l'C’l‘C’)

0 is the inertia tensor of the supporting body at the point O, ®?is the inertia tensor of the supported
body at the point O, O is the inertia tensor of the supported body at its centre of inertia, 9, s
the is the sum of the diagonal components of the tensor @, W, is the absolute acceleration of the
centre of inertia C, of the supported body, and w, is the vector of the angular velocity of the rectangular
axes of the coordinates C,x'y'z", connected with the supported bod dy, about the axes Oxyz.

Proceeding as in [3, p. 159], we obtain the angular momentum K" of the system (the supporting body
plus the supported points) about the moving pole O in absolute motion (in the case considered by the
Lur’yv it was a fixed pole)

K° = Mr;xvy+0° 0 +K’

If the pole O is the centre of inertia C, then K° = 0° - @ + KY.
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We will further determine the angular momentum about the contact point M of the system, consisting
of the supporting body and the supported points, in absolute motion about fixed axes O,x"y*z*
KY = K°+QxOM = Mr.xvy+0° 0 +K%+
+[M(vp+ o xro)+Q,]xp,
%
QI‘ = M l'c

Hence, substituting vy = j — @ X p, We obtain K¥ = m’, i.e. 99'/05, (00'/01), 9O©'/dn are the projections
of the angular momentum K" on to the axes to the axes ey, €, €3.

I wish to thank D. E. Okhotsimskii for this help
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