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The problem of the motion of a material system, consisting of a supporting rigid body, bounded by a surface and rolling on another 
moving surface, and a set of supported point masses, the position of which with respect to this body can be specified by a finite 
number of generalized coordinates, is considered using methods described previously in [1-3]. © 2004 Elsevier Ltd. All rights 
reserved. 

1. THE KINEMATIC PROPERTIES OF THE MOTION 

We begin our study of the material system considered by describing the notation and by considering 
the kinematic properties, We introduce a system of rectangular coordinates Oxyz(il, i2, and i 3 a re  the 
unit vectors of the axes) and OcxCy~z c (i~, i~ and i~ are the unit vectors of the axes), permanently connected 
with the supporting rigid body and with the surface-base respectively (all systems of coordinates are 
left systems). This enables us to define the position of the supporting body with respect to the surface- 
base S c by the coordinatesx~,y~, z~ of the point O in the axes O~x~yCz ~ and the Euler angles ~0, ~, 0 (pure 
rotation, precession and nutation) between the axes introduced, and the position of the system of 
supported point masses Mi with respect to the supporting body (with respect to the axes Oxyz) - by 
certain generalized coordinates 0t 1, . . . ,  ~n. We denote the projections of the vector of the velocity V0 
of the point O and the vector of the angular velocity of the supporting body co onto the Oxyz axes by 
k, l, m andp, q, r. We stipulate that the subscript of the radius vector, having its origin at the point Oa, 
Oc, 0 and Cr, and its projections onto the axes Oaxay% a, OcxCy~z c, Oxyz and C~x~yrzr respectively, is the 
symbol of the end of the radius vector, while the superscript is the symbol of its origin O~, O~, O and 
Cr (the symbol of the system of coordinates Oax~y% ~, OcxCyCz ~, Oxyz and c~xry~z~). 

We will assume further that r7 and r~ are the radius vectors, which fix the position of the points Mi 
and O on the axes OjyCz  c, while ri and rc are the radius vectors which fix the position of the points Mi 
and C (C is the centre of inertia of the system) on the axes Oxyz; hence we obtain 

C C C C C 
r i = ro(xoYoZo) + r i(a I .. . . .  a") 

We will now assume * that the surface-base S c moves, and its motion (the motion of the system of 
coordinates OcxCyCz c permanently connected with it) with respect to the fixed system of coordinates 
O~xayaz ~ (iS, i~ and i~ are the orthonormalized vectors of the axes) is known, i.e. the radius vector 
~oc = i~Oc + i~3~oc + i~oc of the point Oc with origin at the point Oa and the parameters (the generalized 
coordinates), defining the orientation of the axes OcxCyCz c with respect to the axes Oaxay% ~ (for example, 
the Euler angles (Pc, %, 0c) are specified as functions of time. 

tPrikl. Mat. Mekh. Vol. 68, No. 5, pp. 886--895, 2004. 
:~A more complete discussion can be found in the following preprints by the author: Rolling of a rigid body on a moving surface. 
Russian Academy of Sciences, Moscow, 1995; To the problem of the rolling of a rigid body on a moving surface. Institute of 
Mechanics, Moscow State University, Moscow, 1998; Rolling of a sphere on a moving plane. Moscow State University, Moscow, 
2001. 
0021-8928/S--see front matter. © 2004 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.09.015 
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Further, introducing the radius vector p with the origin at the point O and the Gaussian coordinates 
ql, q2 for points of the surface S, bounding the supporting body, we will specify its equation in the form 

P = p ( q l ,  q2)  ( p  = x i  I + Yi2 + z i3 )  ' 

while the coefficients of the first two quadratic forms will be denoted by an,  a22, bn, and b22 (for simplicity 
we will assume that the coordinate lines of the surface are lines of curvature). At the contact point M 
we will attach to the surface S the moving frame of reference MqlqZn with the unit vectors directed 
along the tangent to the coordinate lines and the normal 

' ' ' 
e l  = - ~ n P i ,  e2 = a'~2292, e3 = ~--~--~(Pl × P2) Pox = P 

We will denote the projections of the vectors rc and p onto the axis of this flame of reference by 

~c, 1]0 ec, ~ = 1 Op 1 0p g(p2 = x 2 + y2 + z 2) 
--~11 p0q----~, 1] - a~22 p0q 2, 

We will introduce the cosines of the angles between the axes Oaxayaz a and OcxCyCz c, between the axes 
OcxCyCzC 1 2 and Mqcqcn, and also between the axes Mqlq2n and Oxyz 

, c  . l . a  l , a  l ° a  
! 1 = lai  I + m a l 2 + n a l  3, 

.c ,2 .a 2.a 2oa 
12 = lal I + m a i  2 + h a l  3, 

.c 3 a  3.a 3.a 
! 3 = la|  1 + m a l 2 + n a i  3, 

i I = a e  l + ~ e  2 + Y e  3, 

C C t * C  It C 

e I = (Xcl I + (Xcl 2 + (xci 3 

C . C  ~ * C  . * C  

e 2 = [~cll + 1~¢! 2 + 1~ci3 
C *C ! *C ft C 

e 3 = yc l] + y~12 + Yci3 

i 2 = or'el + [~'e2 + Y'e3,  i 3 = ct"e I + [3"e 2 + y " e  3 

(1.1) 

All that has been stated here for the surface S, which bounds the supporting body, also holds for the 
surface-base S c (the corresponding values are denoted by the same letters but with an index c). Further, 
following Voronets, we will define the position of the supporting body by generalized coordinates 
ql, q2, qc r, qc 2 and O (the first four quantities are the Gaussian coordinates of the point M, and O is the 

1 2 angle between the axes q and qc at the same point), while the position of the whole system, consequently, 
will be defined by the generalized coordinates qi, q2, ql, q2, O, ot 1, . . . ,  a n. 

The projections Kc, lc and mc of the velocity Vo~ of the point Oc onto the OcxCJz c axes will be as follows: 

• c ,1  .a  1 .a  1 .a  
k c ~ ! t " Voc = laXO,: + maYoc + naZoc (1.2) 

where lc and mc are obtained from relations (1.2) by replacing the superscript 1 by 2 and 4, while the 
projectionspc, qc and rc of the angular velocity vector c% of the surface-base onto the axes OcxCyCzCare 
given by known formulae [3, formulae (2.9.3)], where we must replace tp, % 0 by <Pc, ~¢, 0~). 

For the projections of the velocity j = Voc + ~ × pC of a point the surface-base S ~, coinciding at the 
given instant with the contact point M, onto the axes i~, i~, i~ and e~, e~, e~, we correspondingly obtain 

f l = kc + qc zc - r c Y  c, 

f2  = lc + rc xc - Pc zc, 

f3  = mc + PcY c - qc xc, 

b I = e I . j  = a c f  l+a ' c f  2+a '~ f  3 

c , f  b2 = e2"j  = ~cf l  +~c 2 +~cf3  
C ~ .  . - -  

b3 = e3"j  = Y~f  l + Y'cf 2 YcJ3 

(1.3) 

where f l, f z, f 3, bl, b2, ba are functions of t, 1 2 qc, qc. Finally, we obtain as functions of t, q~, q2, 0 the projections 
1 2 Jl,Jz, J3 of the vector j onto the axes of the moving frame of reference Mq q n (jk occurs in the equation 

of motion) 

J] = + b l s i n O + b 2 c ° s O ,  J2 = T-bic°sO+b2sinO, J3 = +b3 
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Here we have used the formulae 

c . c c ~ " = +e; (1.4) e I = + e l s l n O + e 2 c o s O ,  e 2 = ; : e l c o s O + e 2 s m O ,  e 3 

We will put anx above a vector as the symbol of the derivative of the vector in the system of coordinates 
OcxCyCz ~ with respect to time: ~c (as similarly done by Lur'ye [3], who used an asterisk). The absolute 
velocity of the contact point (see [3, pp. 81 and 88]) can be written in the form 

abs Xc c ~ .1 c f 7 . 2  
v M Vo< + ¢o c x pC + P ~c c .a (1.5) = , = Paqc = e 1 4 a l i q c + e 2 4 a 2 2 q c  

V M = V o + g O X p + p ,  P = p a q  a = e l  a ~ l l q l + e 2  

This gives 

V o < + t O c X P C + 6  c = V o + t O x p +  p 

We will introduce a vector U in the plane of the axes el, e2 

× C  ~ C 
p - p  = V o + ~ X p - V o - ~ x p  = ~ 

Hence ( ~  - U + j) 

v o = [ U + ( v o < + t O c x p C ) ] - t o x p  = O - t o x p  

(1.6) 

(1.7) 

There is no slipping at the point M (v0 + to x p - Voc - toc x Pc = 0), and hence we obtain equations of 
non-holonomic constraint (we project the vector U = 6c _ ~ = 0 onto the axes el, and e2) 

(1.8) 

C . !  • U i :t: a~fa-~nq~ sinO + / - 7 . 2  _ f - - - . 1  = 4 a 2 2 q c c o s v - , , [ a l l  q = 0 

c 1 U 2 :1: a~l l t lcCOSO + ~ .2 • , ,  / -- ' -  .2 = , 4 a E 2 q c S l n l ] -  ,,]a22 q = 0 

We can represent the angular velocity to of the supporting rigid body and the vector of an infinitesimal 
rotation 0 of this body as [1, p. 804] 

to = ¢o]+o~2+to3+to c, 0 = 0 ~ + 0 2 + 0 3 + 0  c (1.9) 

The vector toc has projections Pc, qc, rc (as also q~c, ~c, 0c), which are specified functions of time, and 
hence, at a fixed instant of time, the vector of an infinitesimal rotation 0c = 0. 

Hence, from formulae (1.7) and (1.8) of [1] we obtain expressions for the projections of the angular 
velocity of the supporting body onto the ei axis of the mobile frame of reference (here and henceforth 
the upper (lower) sign denotes the case e 3 = e~ (e 3 = --e~)) 

U 3---(I b22 .2 b~2 .2 • b ; l  . !  
= ~a~22q + ---~--qcsinOa~22 - ---~c qcCOSO_+ 

I wl • I I~ 

+ (pctXc + qcac + rcO~c)SmO + (pc~3C + qc~lc + rc~lc)COSO 

U4=_,~ b l l  .1 b~l 1 . -  b~2 .2 
= ~a,f~n q - ---~-c 4 c~/a~l smO :1: --~-c qcCOSa~~/a~2 + 

i t  
+ (pc~lc + qc~l'~ + rc[Ic) sinO ~= (pctX c + qcOt'c + r~tZc)COSO 

( 1 . 1 0 )  

• t t !  

- 0 + (Pc~c + qc~/c + rc'{c) 
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We similarly obtain the projections of the vector 0 = ~V3e l  -I- ~V46,2 -I-- ~V56'3 

b22 e 2 _  b~2 ,. 2 . ~ b~l e I OS.a ~V 3 = - oq ± ~ O q c S m O - ~  ~ U T°qccu 
4al l  

b c c 
b l l ~  1 l l . l -  ~ ~ cb228q  2cOsO 8V 4 = _ .---~-~OqcSmO ~: 

,~11 °q  ~aCll ~aC22 

5V  5 1 (Oalle l 0a22e 2"~ 1 ( t )a l le  l OaC22e 2") , _  
= . . . . . .  " ~ - T O q c l  - OV 

2 a l ,  f~la22[,~q2 oq ~ q l O q  )~:2~Oq~ °qc ~qc ) 

Using equations of the constraint (1.8), expressions (1.10) can be converted to the form 

O = - A i 2  a~llql-A22 a~22q2+A, x = All a~llql+A21 a~22q2+B 
.1 .2 

n = - O + A i  a~llq -A2 a,~222 q + C  
(1.11) 

where 

! i !  

A = +OcSinO + XcCOSO, o c = pcctc + qcCtc + rco~ c 

B = :t: OcCOSO + "c~sinO, x c . . . .  

t iv 

C = +no nc = P~Yc +q~Yc +rcYc 

bll  ~ sin2O q= ~ c o s 2 O ,  All = ~ :17 
a l l  a l l  a22 

c 
A22 = b22 :t: b~2 sin20 :[: cos2O 

c c 

a22 1:122 a i I 

2A 1 = 
In c 1 alnal l  sinOa all :t: e°s---oalna22 
Oq2 

2A 2 = 

• c c 

1 Olna22 smOOlna22 cosOOlnall 

t)ql a~ll  i)q~ ~ ~q~ 

A I 2 -  A21 = :[: s i nOcosO 
\a22 all /  

We point out the following formulae 

p = tYtx+~l]+ny, q = t~a '+xl ] '+ny ' ,  r = o tx"+z l ] "+ny"  

for q ,  q ,  qo qc and From relations (1.8) and (1.10) we further determine the expressions • 1 .2 • 1 .2 O in terms 
of the quasi-velocity (the terms with U 1 and U 2 are not written out) 

qt = 1 .2 1 
~ I I R ( O A 1 2  + x A 2 2 - A A I 2 - B A 2 2 ) ,  q = a~22R(OAl| + ' tA21-AAII-BA21) 

. l  1 .2 1 
qc --- ~ (ffcI2+qJc22-Ac12-Bc22), qc = ~ (ffCll +'Cc21-AciI-BC21) (1.12) 

4alld 4a22d 

_- _ .  + ÷ ÷ A2IA )+ C 
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Here 

d = C11C22--C12C21 = +R, R = AIIA22-A22 

b~ ( + b l l  _ ~ / s i n  0 = I b l l ~ - ~ ) c o s O ,  Cll -- 
C12 C all a22J C all all) 

= b c %os , (b22 :¢ -~)s inO,  C21 = 
C22 ~ .a22  a22 j ~, a22 all j 

(1.13) 

Finally, we obtain, from well-known formulae (see [3, p. 160]) and formula (1.6), an expression for 
the kinetic energy T' of the system considered, derived without taking into account the equations of 
the constraint 

27'-" M'O2+ 2 M ¥ o ' ( t o X r c ) + t o ' o O ' t o +  2(Vo'Qr+to" KOr )+ E miO 2 = 
i=1 

= Mq~ 2 - 2 M ~ .  (to x O) + to" 0 ° "  to + M P  2tO2 - M ( p .  to)2 + 

+ 2 M ~ .  (to x rc)  - 2 M r  c • [Oto 2 - t o ( t o .  O)] + 

N 

+ 2 0 . Q r + 2 t o  . ( Q r x p + K ° ) +  Emiv2 i  = M [ U 2 + 2 U . j + j 2 ] -  
i=l 

(1.14) 

- 2M[U. (to x p) + j .  (to x p)] + to. O ° .  to + Mp2¢o 2 - M(p .  to)2 + 

+ 2M[U. ( ~  x rc) + J" (to x rc)] - 2Mr c • [pto2 _ to(to, p)] + 

N 

+ 2[U- Qr + J Qr] + 2to (Qr  × P + K ° )  + E miD~(vi * • • = ri) 
i=l 

and an expression for 0 ' ,  derived taking into account the equations of the constraint for U = O. 
r 3 r 4 r 5 1 2 We will denote the vector with projections 0®/OU,  ~®/OU,  O®/3U onto the axis Mq q n by 

m'. The expressions for the kinetic energy of the system T' = T + T", O' = ® + 19" and the vector 
m' = m + m" can be split into two terms, where 

2T" = 2j(MU + Qr) + MJ 2 + 2Mj" [(to x rc) - (to x p)] 

20"  = 2 j .  Qr + MJ 2 + 2Mj" [(to x rc) - (to x P)I 

m" = - M(p x j)  + M(r c x j)  

(1.15) 

The expression for 2T is given by formula (2.9) in [1], where we must replace [ l  by new notation: U 
and 

m = O ° .  to + M p 2 t o - M ( p  • t o ) p -  2M(r c- p) to+ 

+M(to .  rc)P + M(to • p ) r c +  Qr x p + K  ° 
(1.16) 

Incidentally, if we are given the vectors 

p = x i  I + y i  2 + z i  3, e l  = txi I + ~ ' i  2 + tx"i 3 

to = p i l + q i 2 + r i 3 ,  J = J x ' i l  + j y ' i 2  + j z ' i 3  
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we have 

ap _ a x .  
aqC( aq '~ll 

a(i) ~ 1 1 1 1  
aqa - 

+ . . .  + 

+ . . .  + 

Yu. P. Bychkov 

az i ael = a(x. + a(x". 
aq a 3, aqa aqah ... + aq--~13 

aJ~ a r .  a j  aJ~ i l  + ... + . 
aqa 13' aqa = aqa ~qCt 13" 

(1.17) 

2. THE E Q U A T I O N S  OF M O T I O N  

Now, taking expressions (1.10) and (1.8) as the quasivelocities 

U 1 1 U 2 2 U 3 U 5 1~1, . n = a ,  = a ,  = ~, U 4 = z, = n ,  . . . , a  

and denoting the corresponding variations of the quasicoordinates by 6V i, 5 ~  using the Euler-Lagrange 
equations we can derive the equations of motion of the system, following Lar'ye [3]. Proceeding as in 
[1] using the notation and calculations used there, we obtain that only the following symbols F and 
are non-zero. 

~5  = - ~ 4  ~:~; s = 1,2 = = 

s A s l n c  s As2rtc s s 
E3 ---- d ' 1~4 = d ' e5  = - I c ] A  - Ic~B 

(2.1) 

3 3 3 
F~5 = - F ~ 3  = q l ,  F45  = - F ~  = - 1 + q2, FM = - r 4 3  = - r l  

' ' ' d = - F 5 3  = 1 - P l ,  F45 = -  = - P 2 ,  F34 = -  3 = - r 2  

r 4  t -+ l  1 " 5  = - 3 = Pl+q2  - 1  or l"tctl3 = Y a + l , 1 3 + l  

3 3 4 4 5 5 
1~4 -" - - r3 ,  1~5 = q3 ,  ~3 --- r3 ,  £5 = - -P3,  ~3 -- - q 3 ,  E4 --- P 3  

(2.2) 

where ~ are the projections of K~ = (A~I/R)el + (AaJR)e2 (~ = 1, 2) onto the el and e 2 axes, 7~,c are 
the triple-index symbols from [1] and d = cnc22- c12c21 = +_R,p~, qk, rk are the coefficients in the formulae 

131 = P l U 3 + p 2 U 4 + p 3 ,  "fl = q l U 3 + q 2 U 4 + q 3  , n l  = r l U 3 + r 2 U 4 + r 3  

Although the expressions obtained here for the quasi velocities are more complex than those of Lar'ye 
[3, p. 35], the symbols ~q, e~ (s, t, q = 1, ... , m = 5), as before, are defined by formulae (1.8.2) and 
(1.8.5) from [3], where the summation is carried out from 1 to m and, principally, all the symbols ~a, 

s ~/ Eq in which one of indices exceeds m = 5 are equal to zero, and hence the equations of motion split 
3 5 into a group of Euler-Lagrange equations for the quasi velocities U ,  U 4 and U and a group of Lagrange 

equations for the coordinates a I . . . .  , o~ n 

5 5 5 
_aae___.~' ~ , r r  aT' U, ~, aT'Er no '  
dtau ,+  ~ z _ ~  tkallr + L ~ k = P'k (2.3) 

r ; l t = 3  v v  r = l a U  aV k 

d n o '  n o '  
dta(~s a a  • 

= Qs; k = 3,4 ,5;  s = 1 . . . . .  n (2.4) 

The equations of motion of the supporting body (2.3) have the form (Qrk = Qr" ek) 

d a e ' +  ( x -  x O ~ - ( n - n l ) ~  + 
dt a o  

+ M [ ( ~  - ~c)X - (11 - qc ) (~ ]  a , ~ q  2 + ( M j  3 + Qr3) a4/'~22q 2 - 

- (Qr2J3 - Qr3J2) + M [ ( n ~  - o l~) j  3 - (a r l  - z~)J2]  - 

- M[(n~c - ff~'c)J3 - (OqC- Z~c)J2] = P ;  
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d~)O' . , ~ e '  .~)o' 
dt  0% + (n - r t l ) - -  ~ -  - (O-  O 1 ) - - ~ -  n - -  (2.5) 

- M [ ( ~  - ~ c ) % -  (11 - 1 1 c ) O ]  a ~ l l q  ! - ( M j  3 + ~ r 3 ) a ~ l l q  ! - 

- (Qr3Jl - QrlJ3) + M[(01] - ~ ) J l  - (xE - nri)j3] - 

- M[(Orlc - "¢~c)Jl - (XSc - nrlc)J3] = 1)'4 

d aO '  . aO '  
dr On + ( o  - ol)9- ~ - (x - %1)-~~ + M(~. - I~c)( a~ l lq lo  + a~222#217)  - 

- M [ ( ~ -  ~c) aff~Hq' +(rl-r lc) f f -d-222i12]n-(Mj,  + Or , )  a~a-222q 2 + 

+ ( M  J2 + Qr2) a~l lq I - (QrlJ2 - Or2Jl) + 

+ M[('Ce - n r l ) j 2  - ( n ~  - oIQjl] - M [ ( x e  c - n ' q c ) j 2  - ( n ~ c  - O8c)jl]  = P~ 

The virtual displacement of any point M1 of the system will be [3, p. 428] 

n 

8r~' = = = 8r 0 + 8r i 8rg + ~ ()r isots  + 0 x r i 
s = I ~)Ots 

The elementary work of all the active forces, applied both to the supporting and the supported bodies, 
on the virtual displacement of points of the system is 

F~(Sro + 0 r~) + ~ F~ vw = ZF,"  = E ° x = 

i=l  i=l   =10a ) 

" ( u  ~r.~ 
= F .  8r;  + m ° .  O .  E | E Fi~-~,|Sa" 

where F is the principal vector and m ° is the principal moment of all the active forces about the pole 
O. In the general case, each force F i is the sum of a potential force Fip and a non-potential force Fin. 

Taking the equation of non-holonomic constraint into account, we obtain from (1.6) 

a pC 
8r~ + 0 x p - 8ro~ - 0 c x = 0 (2.6) 

Since 0c = 0, ~Sr~c = 0, we have 8rg = p × 0, whence 

8'W= F.(pxO)+m°.0+ ~" ~"F i 8¢z*= 

(2.7) 

= . 8vSe3) + Fi~ ri 8{x s (m°-p×,) (SV3e,+8:e2* ~(~ ,] 
sffil~,iffil OGt ) 

On the other hand, 8'Wis expressed in terms of generalized forces, referred to the quasicoordinates 
3 4 5 V ,  V and V and to the generalized coordinates (z k 

s . (2.8) 
= Z e s¢, E 

k=3 s=l 

Comparing expressions (2.7) and (2.8) we find that the quantities P~, P~ and P~ are the projections 
onto the axis M q  q n of the principal moment of the active forces (applied both to the supporting and 
the supported bodies) about the contact point M 
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N 

P'2.k =ram ek(k= l,2,3;mM=m°-p×F), Qs = ~'Fi ~ri 
$ 

Carrying out the above calculations separately for the forces Fip (and the forces F/n), we obtain that 
the quantities OU/OV 3, OU/OV 4, OU/OV 5, which have the form (2.141 from [1, p. 809] (and the generalized 
forces Pin, P~n and Pin, produced by the non-potential forces F/n) ,  a r e  respectively the projections onto 
the Mqlqln axis of the principal moment of the active potential forces (the active non-potential forces) 
about the contact point M. Also P~ = bU/OV k + P[,n (k = 3, 4, 5). 

For a fixed surfaces S c 0 = 0) the equations of motion of the supportion body (2.5) are identical with 
Eqs (2.12) and (2.13) from [1]. In vector form, these equations are 

d [ o ° -  (o + Mp2e) - M(p.  w)p - 2M(r c • p)w + M((o. p)r c + 
dt ~ 

o (2.9) + M(o~. rc) p + Or X p + K r - M(p x j)  + M(r c x j)  ] + 

• * • M +~xM[(p- rc)XO)+ rc+ j ] - ( M r c x  J)+ M[to x (p - rc ) ]X  j = m 

Thus, if the motion of the supported bodies ith respect to the supporting body is specified or there 
are generally no relative motions, we have obtained a closed system of eight differential equations (1.8), 

1 2 1 2 (1.10) and (2.5) for determining the generalized coordinates q ,  q ,  O, qc, q¢ and the quantities ~, x, n 
as functions of time. In general, this system is not closed, and for a complete solution of the problem 
- to determine the generalized coordinates ql, q2, O, q~, q2, (~1, ..., 0~n and the quantities or, ~, n as functions 
of time, we must add the equations of motion of the supported bodies (2.4) to Eqs (1.8), (1.10) and 
(2.5). Omitting the derivation, which can be found in [3, p. 433], we will immediately write Eqs (2.4) 
in the converted form 

gs(Tr) Qs - M[(j + p x (o)* + to x (j + p x (o)1 /)rc 

1 ~ 0  ° OK° , o 
+ ~ .  . . ~ _ ~ .  - 0 ~  • Es ( K r )  , s = 1 . . . .  , n 

(2.1o) 

If the motion of the surface S ¢ is specified, and the set of supported point masses is a rigid body, the 
equations of motion of supported body will be (s = 1, 2, 3; k = 4, 5, 6; [1, p. 811] and [3, pp. 454-458]) 

M r W c r  • 
 rc,( 6 Or) 
oaaS = Qs V o = J + p x t o ,  to~= e;,ak, e ° = e ° + e  

k=4 

(" 1--:' 1 e k • 0 " ' O ) r ' l ' i r ~ r X O  r . ( [ O r + O  r . ~ O - I - W x O  r "(O+2(OrX I~ r - -~J~ l t~ r ) ' ( l )  -~ Qk 

0 o  c = Or r + Mr(Ercr" r c , -  r c r c )  

O0 ° is the inertia tensor of the supporting body at the point O, O°is the inertia tensor of the supported 
Cr Cr body at the point O, Or is the inertia tensor of the supported body at its centre of inertia, dr is 

Cr the is the sum of the diagonal components of the tensor O0,  WCr is the absolute acceleration of the 
centre of inertia Cr of the supported body, and tar is the vector of the angular velocity of the rectangular 
axes of the coordinates Crx~Z r, connected with the supported bodff, about the axes Oxyz. 

Proceeding as in [3, p. 159], we obtain the angular momentum K ~' of the system (the supporting body 
plus the supported points) about the moving pole O in absolute motion (in the case considered by the 
Lur'yv it was a fixed pole) 

K ° = M r c × V o + O ° . w + K  ° 

If the pole O is the centre of inertia C, then K ° = O ° .  co + K °. 
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We will further determine the angular momentum about the contact point M of the system, consisting 
of the supporting body and the supported points, in absolute motion about fixed axes  Oaxayaz a 

K M = K ° + Q x O M  = Mrcxvo+O° .m+K°r+  

+ [ M ( v  o + ~0 × r c )  + Q, ]  × p,  

Qr = M~'c 

Hence, substituting v0 = j - to x p, we obtain K M = m', i.e. ~O'/~0, (30'/Ox), OO'/On are the projections 
of the angular momentum K M on to the axes to the axes el, e2, e3. 

I wish to thank D. E. Okhotsimskii for this help 
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