THE ROLLING OF A RIGID BODY ON A MOVING SURFACE \dagger

Yu. P. BYCHKOV

Moscow
(Received 21 January 2004)
The problem of the motion of a material system, consisting of a supporting rigid body, bounded by a surface and rolling on another moving surface, and a set of supported point masses, the position of which with respect to this body can be specified by a finite number of generalized coordinates, is considered using methods described previously in [1-3]. © 2004 Elsevier Ltd. All rights reserved.

1. THE KINEMATIC PROPERTIES OF THE MOTION

We begin our study of the material system considered by describing the notation and by considering the kinematic properties. We introduce a system of rectangular coordinates $O x y z\left(\mathbf{i}_{1}, \mathbf{i}_{2}\right.$, and \mathbf{i}_{3} are the unit vectors of the axes) and $O_{c} x^{c} y_{z}^{c} z^{c}\left(\mathbf{i}_{1}^{c}, \mathbf{i}_{2}^{c}\right.$ and \dot{i}_{3}^{c} are the unit vectors of the axes), permanently connected with the supporting rigid body and with the surface-base respectively (all systems of coordinates are left systems). This enables us to define the position of the supporting body with respect to the surfacebase S^{c} by the coordinates $x_{0}^{c}, y_{0}^{c}, z_{0}^{c}$ of the point O in the axes $O_{c} x^{c} y^{c} z^{c}$ and the Euler angles φ, ψ, θ (pure rotation, precession and nutation) between the axes introduced, and the position of the system of supported point masses M_{i} with respect to the supporting body (with respect to the axes $O x y z$) - by certain generalized coordinates $\alpha^{1}, \ldots, \alpha^{n}$. We denote the projections of the vector of the velocity V_{0} of the point O and the vector of the angular velocity of the supporting body ω onto the $O x y z$ axes by k, l, m and p, q, r. We stipulate that the subscript of the radius vector, having its origin at the point O_{a}, O_{c}, O and C_{r}, and its projections onto the axes $O_{a} x^{a} y^{a} z^{a}, O_{c} x^{c} y^{c} z^{c}, O x y z$ and $C_{r} x^{r} y^{r} z^{r}$ respectively, is the symbol of the end of the radius vector, while the superscript is the symbol of its origin O_{a}, O_{c}, O and C_{r} (the symbol of the system of coordinates $O_{a} x^{a} y^{a} z^{a}, O_{c} x^{c} y^{c} z^{c}, O x y z$ and $C_{r} x^{r} y^{r} z^{\prime}$).

We will assume further that r_{i}^{c} and r_{0}^{c} are the radius vectors, which fix the position of the points M_{i} and O on the axes $O_{c} x^{c} y^{c} z^{c}$, while r_{i} and r_{C} are the radius vectors which fix the position of the points M_{i} and C (C is the centre of inertia of the system) on the axes $O x y z$; hence we obtain

$$
\mathbf{r}_{i}^{c}=\mathbf{r}_{0}^{c}\left(x_{0}^{c} y_{0}^{c} z_{0}^{c}\right)+\mathbf{r}_{i}\left(\alpha^{1}, \ldots, \alpha^{n}\right)
$$

We will now assume ${ }^{\ddagger}$ that the surface-base S^{c} moves, and its motion (the motion of the system of coordinates $O_{c} x^{c} y^{c} z^{c}$ permanently connected with it) with respect to the fixed system of coordinates $O_{a} x^{a} y^{a} z^{a}\left(\mathbf{i}_{1}^{a}, \mathbf{i}_{2}^{a}\right.$ and \mathbf{i}_{3}^{a} are the orthonormalized vectors of the axes) is known, i.e. the radius vector $\mathbf{r}_{O_{c}}^{a}=\mathbf{i}_{1}^{a} x_{O_{c}}^{a}+\mathbf{i}_{2}^{a} y_{O_{c}}^{a}+\mathbf{i}_{3}^{a} z_{O_{c}}^{a}$ of the point O_{c} with origin at the point O_{a} and the parameters (the generalized coordinates), defining the orientation of the axes $O_{c} x^{c} y^{c} z^{c}$ with respect to the axes $O_{a} x^{a} y^{a} z^{a}$ (for example, the Euler angles $\varphi_{c}, \psi_{c}, \theta_{c}$) are specified as functions of time.

[^0]Further, introducing the radius vector ρ with the origin at the point O and the Gaussian coordinates q^{1}, q^{2} for points of the surface S, bounding the supporting body, we will specify its equation in the form

$$
\boldsymbol{\rho}=\boldsymbol{\rho}\left(q^{1}, q^{2}\right)\left(\boldsymbol{\rho}=x \mathbf{i}_{1}+y \mathbf{i}_{2}+z \mathbf{i}_{3}\right),
$$

while the coefficients of the first two quadratic forms will be denoted by a_{11}, a_{22}, b_{11}, and b_{22} (for simplicity we will assume that the coordinate lines of the surface are lines of curvature). At the contact point M we will attach to the surface S the moving frame of reference $M q^{1} q^{2} n$ with the unit vectors directed along the tangent to the coordinate lines and the normal

$$
\mathbf{e}_{1}=\frac{1}{\sqrt{a_{11}}} \boldsymbol{\rho}_{1}, \quad \mathbf{e}_{2}=\frac{1}{\sqrt{a_{22}}} \rho_{2}, \quad \mathbf{e}_{3}=\frac{1}{\sqrt{a_{11} a_{22}}}\left(\boldsymbol{\rho}_{1} \times \boldsymbol{\rho}_{2}\right) \quad\left(\boldsymbol{\rho}_{\alpha}=\frac{\partial}{\partial q^{\alpha}} \boldsymbol{\rho}\right)
$$

We will denote the projections of the vectors \mathbf{r}_{C} and ρ onto the axis of this frame of reference by

$$
\xi_{C}, \eta_{C}, \varepsilon_{C}, \xi=\frac{1}{\sqrt{a_{11}}} \rho \frac{\partial \rho}{\partial q^{1}}, \quad \eta=\frac{1}{\sqrt{a_{22}}} \rho \frac{\partial \rho}{\partial q^{2}}, \quad \varepsilon\left(\rho^{2}=x^{2}+y^{2}+z^{2}\right)
$$

We will introduce the cosines of the angles between the axes $O_{a} x^{a} y^{a} z^{a}$ and $O_{c} x^{c} y^{c} z^{c}$, between the axes $O_{c} x^{c} y^{c} z^{c}$ and $M q_{c}^{1} q_{c}^{2} n$, and also between the axes $M q^{1} q^{2} n$ and $O x y z$

$$
\begin{align*}
& \mathbf{i}_{1}^{c}=l_{a}^{1} \mathbf{i}_{1}^{a}+m_{a}^{1} \mathbf{i}_{2}^{a}+n_{a}^{1} \mathbf{i}_{3}^{a}, \quad \mathbf{e}_{1}^{c}=\alpha_{c} c_{1}^{c}+\alpha_{c}^{\prime} \mathbf{i}_{2}^{c}+\alpha_{c}^{" \prime} \mathbf{i}_{3}^{c} \\
& \mathbf{i}_{2}^{c}=l_{a}^{2} \mathbf{i}_{1}^{a}+m_{a}^{2} \mathbf{i}_{2}^{a}+n_{a}^{2} i_{3}^{a}, \quad \mathbf{e}_{2}^{c}=\beta_{c} \mathbf{i}_{1}^{c}+\beta_{c}^{\prime} \mathbf{i}_{2}^{c}+\beta_{c}^{\prime \prime i_{3}^{c}} \tag{1.1}\\
& \mathbf{i}_{3}^{c}=l_{a}^{3} \mathbf{i}_{1}^{a}+m_{a}^{3} \mathbf{i}_{2}^{a}+n_{a}^{3} i_{3}^{a}, \quad \mathbf{e}_{3}^{c}=\gamma_{c} \mathbf{i}_{1}^{c}+\gamma_{c}^{\prime} \mathbf{i}_{2}^{c}+\gamma_{c}^{\prime \prime} \mathbf{i}_{3}^{c} \\
& \mathbf{i}_{1}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}+\gamma \mathbf{e}_{3}, \quad \mathbf{i}_{2}=\alpha^{\prime} \mathbf{e}_{1}+\beta^{\prime} \mathbf{e}_{2}+\gamma^{\prime} \mathbf{e}_{3}, \quad \mathbf{i}_{3}=\alpha^{\prime \prime} \mathbf{e}_{1}+\beta^{\prime \prime} \mathbf{e}_{2}+\gamma^{\prime \prime} \mathbf{e}_{3}
\end{align*}
$$

All that has been stated here for the surface S, which bounds the supporting body, also holds for the surface-base S^{c} (the corresponding values are denoted by the same letters but with an index c). Further, following Voronets, we will define the position of the supporting body by generalized coordinates $q^{1}, q^{2}, q_{c}^{P}, q_{c}^{2}$ and ϑ (the first four quantities are the Gaussian coordinates of the point M, and ϑ is the angle between the axes q^{1} and q_{c}^{2} at the same point), while the position of the whole system, consequently, will be defined by the generalized coordinates $q^{1}, q^{2}, q_{c}^{1}, q_{c}^{2}, \vartheta, \alpha^{1}, \ldots, \alpha^{n}$.

The projections K_{c}, l_{c} and m_{c} of the velocity $\mathbf{v}_{\mathbf{O}}$ of the point O_{c} onto the $O_{c} x^{c} y^{c} z^{c}$ axes will be as follows:

$$
\begin{equation*}
k_{c} \equiv i_{1}^{c} \cdot \mathbf{v}_{O_{c}}=l_{a}^{1} \dot{x}_{O_{c}}^{a}+m_{a}^{1} \dot{y}_{O_{c}}^{a}+n_{a}^{1} \dot{z}_{O_{c}}^{a} \tag{1.2}
\end{equation*}
$$

where l_{c} and m_{c} are obtained from relations (1.2) by replacing the superscript 1 by 2 and 4 , while the projections p_{c}, q_{c} and r_{c} of the angular velocity vector ω_{c} of the surface-base onto the axes $O_{c} x^{c} y^{c} z^{c}$ are given by known formulae [3, formulae (2.9.3)], where we must replace φ, ψ, θ by $\varphi_{c}, \psi_{c}, \theta_{c}$).

For the projections of the velocity $\mathbf{j}=\mathbf{v}_{O_{c}}+\boldsymbol{\omega}_{c} \times \boldsymbol{\rho}^{c}$ of a point the surface-base S^{c}, coinciding at the given instant with the contact point M, onto the axes $\mathbf{i}_{1}^{c}, i_{2}^{c}, i_{3}^{c}$ and $\mathbf{e}_{1}^{c}, \mathbf{e}_{2}^{c}$, \mathbf{e}_{3}^{c}, we correspondingly obtain

$$
\begin{align*}
& f_{1}=k_{c}+q_{c} z^{c}-r_{c} y^{c}, \quad b_{1}=\mathbf{e}_{1}^{c} \cdot \mathbf{j}=\alpha_{c} f_{1}+a_{c}^{\prime} f_{2}+\alpha_{c}^{\prime \prime} f_{3} \\
& f_{2}=l_{c}+r_{c} x^{c}-p_{c} z^{c}, \quad b_{2}=\mathbf{e}_{2}^{c} \cdot \mathbf{j}=\beta_{c} f_{1}+\beta_{c}^{\prime} f_{2}+\beta_{c}^{\prime \prime} f_{3} \tag{1.3}\\
& f_{3}=m_{c}+p_{c} y^{c}-q_{c} x^{c}, \quad b_{3}=\mathbf{e}_{3}^{c} \cdot \mathbf{j}=\gamma_{c} f_{1}+\gamma_{c}^{\prime} f_{2}+\gamma_{c}^{\prime \prime} f_{3}
\end{align*}
$$

where $f_{1}, f_{2}, f_{3}, b_{1}, b_{2}, b_{3}$ are functions of t, q_{c}^{1}, q_{c}^{2}. Finally, we obtain as functions of $t, q_{c}^{1}, q_{c}^{2}, \vartheta$ the projections j_{1}, j_{2}, j_{3} of the vector \mathbf{j} onto the axes of the moving frame of reference $M q^{1} q^{2} n$ (j_{k} occurs in the equation of motion)

$$
j_{1}= \pm b_{1} \sin \vartheta+b_{2} \cos \vartheta, \quad j_{2}=\mp b_{1} \cos \vartheta+b_{2} \sin \vartheta, \quad j_{3}= \pm b_{3}
$$

Here we have used the formulae

$$
\begin{equation*}
\mathbf{e}_{1}= \pm e_{1}^{c} \sin \vartheta+e_{2}^{c} \cos \vartheta, \quad e_{2}=\mp e_{1}^{c} \cos \vartheta+e_{2}^{c} \sin \vartheta, \quad e_{3}= \pm e_{3}^{c} \tag{1.4}
\end{equation*}
$$

We will put an x above a vector as the symbol of the derivative of the vector in the system of coordinates $O_{c} x^{c} y^{c} z^{c}$ with respect to time: ${ }^{x_{c}}$ (as similarly done by Lur'ye [3], who used an asterisk). The absolute velocity of the contact point (see [3, pp. 81 and 88]) can be written in the form

$$
\begin{align*}
& \mathbf{v}_{M}^{\text {abs }}=\mathbf{v}_{o_{c}}+\omega_{c} \times \boldsymbol{\rho}^{c}+\stackrel{x}{\boldsymbol{\rho}}_{c}, \quad \stackrel{x}{\boldsymbol{\rho}}_{c}=\boldsymbol{\rho}_{\alpha}^{c} \dot{q}_{c}^{\alpha}=\mathbf{e}_{1}^{c} \sqrt{a_{11}^{c}} \dot{q}_{c}^{1}+\mathbf{e}_{2}^{c} \sqrt{a_{22}^{c}} \dot{q}_{c}^{2} \tag{1.5}\\
& \mathbf{v}_{M}^{\text {abs }}=\mathbf{v}_{0}+\omega \times \boldsymbol{\omega}+\stackrel{*}{\boldsymbol{\rho}}, \quad \stackrel{*}{\boldsymbol{\rho}}=\boldsymbol{\rho}_{\alpha} \dot{q}^{\alpha}=\mathbf{e}_{1} \sqrt{a_{11} \dot{q}^{1}+\mathbf{e}_{2} \sqrt{a_{22}} \dot{q}^{2}}
\end{align*}
$$

This gives

$$
\mathbf{v}_{O_{c}}+\omega_{c} \times \boldsymbol{\rho}^{c}+\stackrel{x}{\boldsymbol{\rho}}_{c}^{c}=\mathbf{v}_{0}+\boldsymbol{\omega} \times \boldsymbol{\rho}+\stackrel{*}{\boldsymbol{\rho}}
$$

We will introduce a vector \mathbf{U} in the plane of the axes $\mathbf{e}_{1}, \mathbf{e}_{2}$

$$
\begin{equation*}
\stackrel{x}{\rho}_{\boldsymbol{\rho}}-\stackrel{*}{\rho}^{*}=\mathbf{v}_{0}+\omega \times \rho-\mathbf{v}_{O_{c}}-\omega_{c} \times \rho^{c}=\overline{\mathbf{U}} \tag{1.6}
\end{equation*}
$$

Hence ($\boldsymbol{\Phi} \equiv \mathbf{U}+\mathbf{j})$

$$
\begin{equation*}
\mathbf{v}_{0}=\left[\mathbf{U}+\left(\mathbf{v}_{O_{c}}+\omega_{c} \times \boldsymbol{\rho}^{c}\right)\right]-\boldsymbol{\omega} \times \boldsymbol{\rho}=\boldsymbol{\Phi}-\boldsymbol{\omega} \times \boldsymbol{\rho} \tag{1.7}
\end{equation*}
$$

There is no slipping at the point $M\left(\mathbf{v}_{0}+\boldsymbol{\omega} \times \boldsymbol{\rho}-\mathbf{v}_{O_{c}}-\boldsymbol{\omega}_{c} \times \boldsymbol{\rho}_{c}=0\right)$, and hence we obtain equations of non-holonomic constraint (we project the vector $\mathbf{U}=\stackrel{\widehat{\boldsymbol{\rho}}}{ }^{c}-\stackrel{*}{\boldsymbol{\rho}}=0$ onto the axes \mathbf{e}_{1}, and \mathbf{e}_{2})

$$
\begin{align*}
& U^{1}= \pm \sqrt{a_{11}^{c}} \dot{q}_{c}^{1} \sin \vartheta+\sqrt{a_{22}^{c}} \dot{q}_{c}^{2} \cos \vartheta-\sqrt{a_{11}} \dot{q}^{1}=0 \\
& U^{2}=\mp \sqrt{a_{11}^{c}} \dot{q}_{c}^{1} \cos \vartheta+\sqrt{a_{22}^{c}} \dot{q}_{c}^{2} \sin \vartheta-\sqrt{a_{22}} \dot{q}^{2}=0 \tag{1.8}
\end{align*}
$$

We can represent the angular velocity ω of the supporting rigid body and the vector of an infinitesimal rotation θ of this body as [1, p. 804]

$$
\begin{equation*}
\omega=\omega_{1}+\omega_{2}+\omega_{3}+\omega_{c}, \quad \theta=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{c} \tag{1.9}
\end{equation*}
$$

The vector ω_{c} has projections p_{c}, q_{c}, r_{c} (as also $\varphi_{c}, \psi_{c}, \theta_{c}$), which are specified functions of time, and hence, at a fixed instant of time, the vector of an infinitesimal rotation $\boldsymbol{\theta}_{c}=0$.

Hence, from formulae (1.7) and (1.8) of [1] we obtain expressions for the projections of the angular velocity of the supporting body onto the \mathbf{e}_{i} axis of the mobile frame of reference (here and henceforth the upper (lower) sign denotes the case $\left.\mathbf{e}_{3}=\mathbf{e}_{3}^{c}\left(\mathbf{e}_{3}=-\mathbf{e}_{3}^{c}\right)\right)$

$$
\begin{align*}
& U^{3} \equiv \sigma=-\frac{b_{22}}{\sqrt{a_{22}}} \dot{q}^{2} \pm \frac{b_{22}^{c}}{\sqrt{a_{22}^{c}}} \dot{q}_{c}^{2} \sin \vartheta-\frac{b_{11}^{c}}{\sqrt{a_{11}^{c}}} \dot{q}_{c}^{1} \cos \vartheta \pm \\
& \pm\left(p_{c} \alpha_{c}+q_{c} \alpha_{c}^{\prime}+r_{c} \alpha_{c}^{\prime \prime}\right) \sin \vartheta+\left(p_{c} \beta_{c}+q_{c} \beta_{c}^{\prime}+r_{c} \beta_{c}^{\prime \prime}\right) \cos \vartheta \\
& U^{4} \equiv \tau=\frac{b_{11}}{\sqrt{a_{11}}} \dot{q}^{1}-\frac{b_{11}^{c}}{\sqrt{a_{11}^{c}}} \dot{q}_{c}^{1} \sin \vartheta \mp \frac{b_{22}^{c}}{\sqrt{a_{22}^{c}}} \dot{q}_{c}^{2} \cos \vartheta+ \tag{1.10}\\
& +\left(p_{c} \beta_{c}+q_{c} \beta_{c}^{\prime}+r_{c} \beta_{c}^{\prime \prime}\right) \sin \vartheta \mp\left(p_{c} \alpha_{c}+q_{c} \alpha_{c}^{\prime}+r_{c} \alpha_{c}^{\prime \prime}\right) \cos \vartheta \\
& U^{5}=n=\frac{1}{2 \sqrt{a_{11} a_{22}}}\left(\frac{\partial a_{11}}{\partial q^{2}} \dot{q}^{1}-\frac{\partial a_{22}}{\partial q^{1}} \dot{q}^{2}\right) \mp \frac{1}{2 \sqrt{a_{11}^{c} a_{22}^{c}}}\left(\frac{\partial a_{11}^{c}}{\partial q_{c}^{2}} \dot{q}_{c}^{1}-\frac{\partial a_{22}^{c}}{\partial q_{c}^{1}} \dot{q}_{c}^{2}\right)- \\
& -\dot{\vartheta} \pm\left(p_{c} \gamma_{c}+q_{c} \gamma_{c}^{\prime}+r_{c} \gamma_{c}^{\prime \prime}\right)
\end{align*}
$$

We similarly obtain the projections of the vector $\boldsymbol{\theta}=\delta V^{3} \bar{e}_{1}+\delta V^{4} \bar{e}_{2}+\delta V^{5} \bar{e}_{3}$

$$
\begin{aligned}
& \delta V^{3}=-\frac{b_{22}}{\sqrt{a_{22}}} \delta q^{2} \pm \frac{b_{22}^{c}}{\sqrt{a_{22}^{c}}} \delta q_{c}^{2} \sin \vartheta-\frac{b_{11}^{c}}{\sqrt{a_{11}^{c}}} \delta q_{c}^{1} \cos \vartheta \\
& \delta V^{4}=\frac{b_{11}}{\sqrt{a_{11}}} \delta q^{1}-\frac{b_{11}^{c}}{\sqrt{a_{11}^{c}}} \delta q_{c}^{1} \sin \vartheta \mp \frac{b_{22}^{c}}{\sqrt{a_{22}^{c}}} \delta q_{c}^{2} \cos \vartheta \\
& \delta V^{5}=\frac{1}{2 \sqrt{a_{11} a_{22}}}\left(\frac{\partial a_{11}}{\partial q^{2}} \delta q^{1}-\frac{\partial a_{22}}{\partial q^{1}} \delta q^{2}\right) \mp \frac{1}{2 \sqrt{a_{11}^{c} a_{22}^{c}}}\left(\frac{\partial a_{11}^{c}}{\partial q_{c}^{2}} \delta q_{c}^{1}-\frac{\partial a_{22}^{c}}{\partial q_{c}^{1}} \delta q_{c}^{2}\right)-\delta \vartheta
\end{aligned}
$$

Using equations of the constraint (1.8), expressions (1.10) can be converted to the form

$$
\begin{align*}
& \sigma=-\Delta_{12} \sqrt{a_{11}} \dot{q}^{1}-\Delta_{22} \sqrt{a_{22}} \dot{q}^{2}+A, \quad \tau=\Delta_{11} \sqrt{a_{11}} \dot{q}^{1}+\Delta_{21} \sqrt{a_{22}} \dot{q}^{2}+B \\
& n=-\dot{\vartheta}+\Delta_{1} \sqrt{a_{11}} \dot{q}^{1}-\Delta_{2} \sqrt{a_{22}} \dot{q}^{2}+C \tag{1.11}
\end{align*}
$$

where

$$
\begin{aligned}
& A= \pm \sigma_{c} \sin \vartheta+\tau_{c} \cos \vartheta, \quad \sigma_{c}=p_{c} \alpha_{c}+q_{c} \alpha_{c}^{\prime}+r_{c} \alpha_{c}^{\prime \prime} \\
& B=\mp \sigma_{c} \cos \vartheta+\tau_{c} \sin \vartheta, \quad \tau_{c}=\ldots \\
& C= \pm n_{c}, \quad n_{c}=p_{c} \gamma_{c}+q_{c} \gamma_{c}^{\prime}+r_{c} \gamma_{c}^{\prime \prime} \\
& \Delta_{11}=\frac{b_{11}}{a_{11}} \mp \frac{b_{11}^{c}}{a_{11}^{c}} \sin ^{2} \vartheta \mp \frac{b_{22}^{c}}{a_{22}^{c}} \cos ^{2} \vartheta, \quad \Delta_{22}=\frac{b_{22}}{a_{22}} \mp \frac{b_{22}^{c}}{a_{22}^{c}} \sin ^{2} \vartheta \mp \frac{b_{11}^{c}}{a_{11}^{c}} \cos ^{2} \vartheta \\
& 2 \Delta_{1}=\frac{1}{\sqrt{a_{22}}} \frac{\partial \ln a_{11}}{\partial q^{2}}-\frac{\sin \vartheta}{\sqrt{a_{22}^{c}}} \frac{\partial \ln a_{11}^{c}}{\partial q_{c}^{2}} \pm \frac{\cos \vartheta}{\sqrt{a_{11}^{c}}} \frac{\partial \ln a_{12}^{c}}{\partial q_{c}^{1}} \\
& 2 \Delta_{2}=\frac{1}{\sqrt{a_{11}}} \frac{\partial \ln a_{22}}{\partial q^{1}} \mp \frac{\sin \vartheta}{\sqrt{a_{11}^{c}}} \frac{\partial \ln a_{22}^{c}}{\partial q_{c}^{1}}-\frac{\cos \vartheta}{\sqrt{a_{22}^{c}}} \frac{\partial \ln a_{11}^{c}}{\partial q_{c}^{2}} \\
& \Delta_{12} \equiv \Delta_{21}=\mp\left(\frac{b_{22}^{c}}{a_{22}^{c}}-\frac{b_{11}^{c}}{a_{11}^{c}}\right) \sin \vartheta \cos \vartheta
\end{aligned}
$$

We point out the following formulae

$$
p=\sigma \alpha+\tau \beta+n \gamma, \quad q=\sigma \alpha^{\prime}+\tau \beta^{\prime}+n \gamma^{\prime}, \quad r=\sigma \alpha^{\prime \prime}+\tau \beta^{\prime \prime}+n \gamma^{\prime \prime}
$$

From relations (1.8) and (1.10) we further determine the expressions for $\dot{q}^{1}, \dot{q}^{2}, \dot{q}_{c}^{1}, \dot{q}_{c}^{2}$ and $\dot{\vartheta}$ in terms of the quasi-velocity (the terms with U^{1} and U^{2} are not written out)

$$
\begin{align*}
& \dot{q}^{1}=\frac{1}{\sqrt{a_{11}} R}\left(\sigma \Delta_{12}+\tau \Delta_{22}-A \Delta_{12}-B \Delta_{22}\right), \quad \dot{q}^{2}=-\frac{1}{\sqrt{a_{22} R}}\left(\sigma \Delta_{11}+\tau \Delta_{21}-A \Delta_{11}-B \Delta_{21}\right) \\
& \dot{q}_{c}^{1}=\frac{1}{\sqrt{a_{11}^{c}} d}\left(\sigma c_{12}+\tau c_{22}-A c_{12}-B c_{22}\right), \quad \dot{q}_{c}^{2}=-\frac{1}{\sqrt{a_{22}^{c}} d}\left(\sigma c_{11}+\tau c_{21}-A c_{11}-B c_{21}\right) \tag{1.12}\\
& \dot{\vartheta}=-n+\frac{(\sigma-A)}{R}\left(\Delta_{12} \Delta_{1}+\Delta_{11} \Delta_{2}\right)-\frac{(\tau-B)}{R}\left(\Delta_{22} \Delta_{1}+\Delta_{21} \Delta_{2}\right)+C
\end{align*}
$$

Here

$$
\begin{align*}
& d=c_{11} c_{22}-c_{12} c_{21}= \pm R, \quad R=\Delta_{11} \Delta_{22}-\Delta_{12}^{2} \\
& c_{12}=\left(\frac{b_{11}}{a_{11}} \mp \frac{b_{22}^{c}}{a_{22}^{c}}\right) \cos \vartheta, \quad c_{11}=\left(\pm \frac{b_{11}}{a_{11}}-\frac{b_{11}^{c}}{a_{11}^{c}}\right) \sin \vartheta \tag{1.13}\\
& c_{22}=\left(\frac{b_{22}}{a_{22}} \mp \frac{b_{22}^{c}}{a_{22}^{c}}\right) \sin \vartheta, \quad c_{21}=-\left(\pm \frac{b_{22}}{a_{22}}-\frac{b_{11}^{c}}{a_{11}^{c}}\right) \cos \vartheta
\end{align*}
$$

Finally, we obtain, from well-known formulae (see [3, p. 160]) and formula (1.6), an expression for the kinetic energy T^{\prime} of the system considered, derived without taking into account the equations of the constraint

$$
\begin{align*}
& 2 T^{\prime}=M v_{0}^{2}+2 M \mathbf{v}_{0} \cdot\left(\boldsymbol{\omega} \times \mathbf{r}_{C}\right)+\boldsymbol{\omega} \cdot \boldsymbol{\Theta}^{o} \cdot \boldsymbol{\omega}+2\left(\mathbf{v}_{0} \cdot \mathbf{Q}_{r}+\boldsymbol{\omega} \cdot \mathbf{K}_{r}^{o}\right)+\sum_{i=1} m_{i} v_{i}^{2}= \\
& =M \Phi^{2}-2 M \boldsymbol{\Phi} \cdot(\boldsymbol{\omega} \times \boldsymbol{\rho})+\boldsymbol{\omega} \cdot \boldsymbol{\Theta}^{o} \cdot \boldsymbol{\omega}+M \boldsymbol{\rho}^{2} \boldsymbol{\omega}^{2}-M(\boldsymbol{\rho} \cdot \boldsymbol{\omega})^{2}+ \\
& +2 M \boldsymbol{\Phi} \cdot\left(\boldsymbol{\omega} \times \mathbf{r}_{C}\right)-2 M \mathbf{r}_{C} \cdot\left[\boldsymbol{\rho} \boldsymbol{\omega}^{2}-\boldsymbol{\omega}(\boldsymbol{\omega} \cdot \boldsymbol{\rho})\right]+ \\
& +2 \boldsymbol{\Phi} \cdot \mathbf{Q}_{r}+2 \boldsymbol{\omega} \cdot\left(\mathbf{Q}_{r} \times \boldsymbol{\rho}+\mathbf{K}_{r}^{o}\right)+\sum_{i=1}^{N} m_{i} v_{i}^{2}=M\left[U^{2}+2 \mathbf{U} \cdot \mathbf{j}+j^{2}\right]- \tag{1.14}\\
& -2 M[\mathbf{U} \cdot(\boldsymbol{\omega} \times \boldsymbol{\rho})+\mathbf{j} \cdot(\boldsymbol{\omega} \times \boldsymbol{\rho})]+\boldsymbol{\omega} \cdot \boldsymbol{\Theta}^{o} \cdot \boldsymbol{\omega}+M \rho^{2} \boldsymbol{\omega}^{2}-M(\boldsymbol{\rho} \cdot \boldsymbol{\omega})^{2}+ \\
& +2 M\left[\mathbf{U} \cdot\left(\overline{\boldsymbol{\omega}} \times \overline{\mathbf{r}}_{C}\right)+\mathbf{j} \cdot\left(\boldsymbol{\omega} \times \mathbf{r}_{C}\right)\right]-2 M \mathbf{r}_{C} \cdot\left[\boldsymbol{\rho} \boldsymbol{\omega}^{2}-\boldsymbol{\omega}(\boldsymbol{\omega} \cdot \boldsymbol{\rho})\right]+ \\
& +2\left[\mathbf{U} \cdot \mathbf{Q}_{r}+\mathbf{j} \cdot \mathbf{Q}_{r}\right]+2 \boldsymbol{\omega} \cdot\left(\mathbf{Q}_{r} \times \boldsymbol{\rho}+\mathbf{K}_{r}^{o}\right)+\sum_{i=1}^{N} m_{i} v_{i}^{2}\left(\mathbf{v}_{i}=\mathbf{r}_{i}\right)
\end{align*}
$$

and an expression for Θ^{\prime}, derived taking into account the equations of the constraint for $\mathbf{U}=0$.
We will denote the vector with projections $\partial \Theta^{\prime} / \partial U^{3}, \partial \Theta^{\prime} / \partial U^{4}, \partial \Theta^{\prime} / \partial U^{5}$ onto the axis $M q^{1} q^{2} n$ by \mathbf{m}^{\prime}. The expressions for the kinetic energy of the system $T^{\prime}=T+T^{\prime \prime}, \Theta^{\prime}=\Theta+\Theta^{\prime \prime}$ and the vector $\mathbf{m}^{\prime}=\mathbf{m}+\mathbf{m}^{\prime \prime}$ can be split into two terms, where

$$
\begin{align*}
& 2 T^{\prime \prime}=2 \mathbf{j}\left(M \mathbf{U}+\mathbf{Q}_{r}\right)+M j^{2}+2 M \mathbf{j} \cdot\left[\left(\boldsymbol{\omega} \times \mathbf{r}_{C}\right)-(\boldsymbol{\omega} \times \boldsymbol{\rho})\right] \\
& 2 \Theta^{\prime \prime}=2 \mathbf{j} \cdot \mathbf{Q}_{r}+M j^{2}+2 M \mathbf{j} \cdot\left[\left(\boldsymbol{\omega} \times \mathbf{r}_{C}\right)-(\boldsymbol{\omega} \times \boldsymbol{\rho})\right] \tag{1.15}\\
& \mathbf{m}^{\prime \prime}=-M(\boldsymbol{\rho} \times \mathbf{j})+M\left(\mathbf{r}_{C} \times \mathbf{j}\right)
\end{align*}
$$

The expression for $2 T$ is given by formula (2.9) in [1], where we must replace $\boldsymbol{\Omega}$ by new notation: \mathbf{U} and

$$
\begin{align*}
& \mathbf{m}=\boldsymbol{\Theta}^{o} \cdot \boldsymbol{\omega}+M \rho^{2} \boldsymbol{\omega}-M(\boldsymbol{\rho} \cdot \boldsymbol{\omega}) \boldsymbol{\rho}-2 M\left(\mathbf{r}_{C} \cdot \boldsymbol{\rho}\right) \boldsymbol{\omega}+ \\
& +M\left(\boldsymbol{\omega} \cdot \mathbf{r}_{C}\right) \boldsymbol{\rho}+M(\boldsymbol{\omega} \cdot \boldsymbol{\rho}) \mathbf{r}_{C}+\mathbf{Q}_{r} \times \boldsymbol{\rho}+\mathbf{K}_{r}^{o} \tag{1.16}
\end{align*}
$$

Incidentally, if we are given the vectors

$$
\begin{aligned}
& \boldsymbol{\rho}=x \mathbf{i}_{1}+y \mathbf{i}_{2}+z \mathbf{i}_{3}, \quad \mathbf{e}_{1}=\alpha \mathbf{i}_{1}+\alpha^{\prime} \mathbf{i}_{2}+\alpha^{\prime \prime} \mathbf{i}_{3} \\
& \omega=p \mathbf{i}_{1}+q \mathbf{i}_{2}+r \mathbf{i}_{3}, \quad \mathbf{j}=j_{x} \cdot \mathbf{i}_{1}+j_{y} \cdot \mathbf{i}_{2}+j_{z} \cdot \mathbf{i}_{3}
\end{aligned}
$$

we have

$$
\begin{array}{ll}
\frac{\partial \boldsymbol{p}}{\partial q^{\alpha}}=\frac{\partial x}{\partial q^{\alpha}} \mathbf{i}_{1}+\ldots+\frac{\partial z}{\partial q^{\alpha}} \mathbf{i}_{3}, & \frac{\partial \mathbf{e}_{1}}{\partial q^{\alpha}}=\frac{\partial \alpha}{\partial q^{\alpha}} \mathbf{i}_{1}+\ldots+\frac{\partial \alpha}{\partial q^{\alpha}} \mathbf{i}_{3} \\
\frac{\partial \omega}{\partial q^{\alpha}}=\frac{\partial p}{\partial q^{\alpha}} \mathbf{i}_{1}+\ldots+\frac{\partial r}{\partial q^{\alpha}} \mathbf{i}_{3}, \quad \frac{\partial \mathbf{j}}{\partial q^{\alpha}}=\frac{\partial j_{x}}{\partial q^{\alpha}} \mathbf{i}_{1}+\ldots+\frac{\partial j_{z}}{\partial q^{\alpha}} \mathbf{i}_{3} . \tag{1.17}
\end{array}
$$

2. THE EQUATIONS OF MOTION

Now, taking expressions (1.10) and (1.8) as the quasivelocities

$$
U^{1}=a^{1}, \quad U^{2}=a^{2}, \quad U^{3}=\sigma, \quad U^{4}=\tau, \quad U^{5}=n, \quad \dot{\alpha}^{1}, \ldots, \dot{\alpha}^{n}
$$

and denoting the corresponding variations of the quasicoordinates by $\delta V^{i}, \delta \alpha^{k}$ using the Euler-Lagrange equations we can derive the equations of motion of the system, following Lar'ye [3]. Proceeding as in [1] using the notation and calculations used there, we obtain that only the following symbols Γ and ε are non-zero.

$$
\begin{gather*}
\Gamma_{35}^{s}=-\Gamma_{53}^{s}=\kappa_{1}^{s}, \quad \Gamma_{45}^{s}=-\Gamma_{54}^{s}=\kappa_{2}^{s} ; \quad s=1,2 \\
\varepsilon_{3}^{s}=\frac{\Delta_{s 1} n_{c}}{d}, \quad \varepsilon_{4}^{s}=\frac{\Delta_{s 2} n_{c}}{d}, \quad \varepsilon_{5}^{s}=-\kappa_{1}^{s} A-\kappa_{2}^{s} B \tag{2.1}\\
\Gamma_{35}^{3}=-\Gamma_{53}^{3}=q_{1}, \quad \Gamma_{45}^{3}=-\Gamma_{54}^{3}=-1+q_{2}, \quad \Gamma_{34}^{3}=-\Gamma_{43}^{3}=-r_{1} \\
\Gamma_{35}^{4}=-\Gamma_{53}^{4}=1-p_{1}, \quad \Gamma_{45}^{4}=-\Gamma_{54}^{4}=-p_{2}, \quad \Gamma_{34}^{4}=-\Gamma_{43}^{4}=-r_{2} \\
\Gamma_{34}^{s}=-\Gamma_{43}^{s}=p_{1}+q_{2}-1 \quad \text { or } \Gamma_{\alpha \beta}^{s}=\gamma_{\alpha+1, \beta+1}^{\varepsilon+1} \tag{2.2}\\
\varepsilon_{4}^{3}=-r_{3}, \quad \varepsilon_{5}^{3}=q_{3}, \quad \varepsilon_{3}^{4}=r_{3}, \quad \varepsilon_{5}^{4}=-p_{3}, \quad \varepsilon_{3}^{s}=-q_{3}, \quad \varepsilon_{4}^{s}=p_{3}
\end{gather*}
$$

where κ_{α}^{s} are the projections of $\mathbf{K}_{\alpha}=\left(\Delta_{\alpha 1} / R\right) \mathbf{e}_{1}+\left(\Delta_{\alpha 2} / R\right) \mathbf{e}_{2}(\alpha=1,2)$ onto the \mathbf{e}_{1} and \mathbf{e}_{2} axes, $\gamma_{b c}^{a}$ are the triple-index symbols from [1] and $d=c_{11} c_{22}-c_{12} c_{21}= \pm R, p_{k}, q_{k}, r_{k}$ are the coefficients in the formulae

$$
\sigma_{1}=p_{1} U^{3}+p_{2} U^{4}+p_{3}, \quad \tau_{1}=q_{1} U^{3}+q_{2} U^{4}+q_{3}, \quad n_{1}=r_{1} U^{3}+r_{2} U^{4}+r_{3}
$$

Although the expressions obtained here for the quasi velocities are more complex than those of Lar'ye [3, p. 35], the symbols $\Gamma_{t q}^{s}, \varepsilon_{q}^{s}(s, t, q=1, \ldots, m=5)$, as before, are defined by formulae (1.8.2) and (1.8.5) from [3], where the summation is carried out from 1 to m and, principally, all the symbols $\Gamma_{t q}^{s}$, ε_{q}^{s} in which one of indices exceeds $m=5$ are equal to zero, and hence the equations of motion split into a group of Euler-Lagrange equations for the quasi velocities U^{3}, U^{4} and U^{5} and a group of Lagrange equations for the coordinates $\alpha^{1}, \ldots, \alpha^{n}$

$$
\begin{align*}
& \frac{d}{d t} \frac{\partial \Theta^{\prime}}{\partial U^{k}}+\sum_{r=1}^{5} \sum_{t=3}^{5} \Gamma_{t k}^{r} \frac{\partial T^{\prime}}{\partial U^{r}} U^{t}+\sum_{r=1}^{5} \frac{\partial T^{\prime}}{\partial U^{r}} \varepsilon_{k}^{r}-\frac{\partial \Theta^{\prime}}{\partial V^{k}}=P_{k}^{\prime} \tag{2.3}\\
& \frac{d}{d t} \frac{\partial \Theta^{\prime}}{\partial \dot{\alpha}^{s}}-\frac{\partial \Theta^{\prime}}{\partial \alpha^{s}}=Q_{s} ; \quad k=3,4,5 ; \quad s=1, \ldots, n \tag{2.4}
\end{align*}
$$

The equations of motion of the supporting body (2.3) have the form ($Q_{r k}=\mathbf{Q}_{r} \cdot \mathbf{e}_{k}$)

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial \Theta^{\prime}}{\partial \sigma}+\left(\tau-\tau_{1}\right) \frac{\partial \Theta^{\prime}}{\partial n}-\left(n-n_{1}\right) \frac{\partial \Theta^{\prime}}{\partial \tau}+ \\
& +M\left[\left(\xi-\xi_{C}\right) \tau-\left(\eta-\eta_{C}\right) \sigma\right] \sqrt{a_{22}} \dot{q}^{2}+\left(M j_{3}+Q_{r 3}\right) \sqrt{a_{22}} \dot{q}^{2}- \\
& -\left(Q_{r 2} j_{3}-Q_{r 3} j_{2}\right)+M\left[(n \xi-\sigma \varepsilon) j_{3}-(\sigma \eta-\tau \xi) j_{2}\right]- \\
& -M\left[\left(n \xi_{C}-\sigma \varepsilon_{C}\right) j_{3}-\left(\sigma \eta_{C}-\tau \xi_{C}\right) j_{2}\right]=P_{3}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d}{d t} \frac{\partial \Theta^{\prime}}{\partial \tau}+\left(n-n_{1}\right) \frac{\partial \Theta^{\prime}}{\partial \sigma}-\left(\sigma-\sigma_{1}\right) \frac{\partial \Theta^{\prime}}{\partial n}- \tag{2.5}\\
& -M\left[\left(\xi-\xi_{C}\right) \tau-\left(\eta-\eta_{C}\right) \sigma\right] \sqrt{a_{11}} \dot{q}^{1}-\left(M j_{3}+Q_{r 3}\right) \sqrt{a_{11}} \dot{q}^{1}- \\
& -\left(Q_{r 3} j_{1}-Q_{r 1} j_{3}\right)+M\left[(\sigma \eta-\tau \xi) j_{1}-(\tau \varepsilon-n \eta) j_{3}\right]- \\
& -M\left[\left(\sigma \eta_{C}-\tau \xi_{C}\right) j_{1}-\left(\tau \varepsilon_{C}-n \eta_{C}\right) j_{3}\right]=P_{4}^{\prime} \\
& \frac{d}{d t} \frac{\partial \Theta^{\prime}}{\partial n}+\left(\sigma-\sigma_{1}\right) \frac{\partial \Theta^{\prime}}{\partial \tau}-\left(\tau-\tau_{1}\right) \frac{\partial \Theta^{\prime}}{\partial \sigma}+M\left(\varepsilon-\varepsilon_{C}\right)\left(\sqrt{a_{11}} \dot{q}^{1} \sigma+\sqrt{a_{22}} \dot{q}^{2} \tau\right)- \\
& -M\left[\left(\xi-\xi_{C}\right) \sqrt{a_{11}} \dot{q}^{1}+\left(\eta-\eta_{C}\right) \sqrt{a_{22}} \dot{q}^{2}\right] n-\left(M j_{1}+Q_{r 1}\right) \sqrt{a_{22}} \dot{q}^{2}+ \\
& +\left(M j_{2}+Q_{r 2}\right) \sqrt{a_{11}} \dot{q}^{1}-\left(Q_{r 1} j_{2}-Q_{r 2} j_{1}\right)+ \\
& +M\left[(\tau \varepsilon-n \eta) j_{2}-(n \xi-\sigma \varepsilon) j_{1}\right]-M\left[\left(\tau \varepsilon_{C}-n \eta_{C}\right) j_{2}-\left(n \xi_{C}-\sigma \varepsilon_{C}\right) j_{1}\right]=P_{5}^{\prime}
\end{align*}
$$

The virtual displacement of any point M_{1} of the system will be [3, p. 428]

$$
\delta \mathbf{r}_{i}^{a}=\delta \mathbf{r}_{0}^{a}+\delta \mathbf{r}_{i}=\delta \mathbf{r}_{0}^{a}+\sum_{s=1}^{n} \frac{\partial r_{i}}{\partial \alpha^{s}} \delta \alpha^{s}+\theta \times \mathbf{r}_{i}
$$

The elementary work of all the active forces, applied both to the supporting and the supported bodies, on the virtual displacement of points of the system is

$$
\begin{aligned}
& \delta^{\prime} W=\sum_{i=1}^{N} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i}^{a}=\sum_{i=1}^{N} \mathbf{F}_{i}\left(\delta \mathbf{r}_{0}^{a}+\boldsymbol{\theta} \times \mathbf{r}_{i}\right)+\sum_{i=1}^{N} \mathbf{F}_{i}\left(\sum_{s=1}^{n} \frac{\partial \mathbf{r}_{i}}{\partial \alpha^{s}} \delta \alpha^{s}\right)= \\
& =\mathbf{F} \cdot \delta \mathbf{r}_{0}^{a}+\mathbf{m}^{o} \cdot \boldsymbol{\theta}+\sum_{s=1}^{n}\left(\sum_{i=1}^{N} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial \alpha^{s}}\right) \delta \alpha^{s}
\end{aligned}
$$

where \mathbf{F} is the principal vector and \mathbf{m}^{0} is the principal moment of all the active forces about the pole O. In the general case, each force \mathbf{F}_{i} is the sum of a potential force $\mathbf{F}_{i p}$ and a non-potential force $\mathbf{F}_{i n}$.

Taking the equation of non-holonomic constraint into account, we obtain from (1.6)

$$
\begin{equation*}
\delta \mathbf{r}_{0}^{a}+\theta \times p-\delta r_{O_{c}}^{a}-\theta_{c} \times p^{c}=0 \tag{2.6}
\end{equation*}
$$

Since $\boldsymbol{\theta}_{c}=0, \delta \mathbf{r}_{O_{c}}^{a}=0$, we have $\delta \mathbf{r}_{0}^{a}=\boldsymbol{\rho} \times \boldsymbol{\theta}$, whence

$$
\begin{align*}
& \delta^{\prime} W=\mathbf{F} \cdot(\rho \times \theta)+\mathbf{m}^{o} \cdot \theta+\sum_{s=1}^{n}\left(\sum_{i=1}^{N} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial \alpha^{s}}\right) \delta \alpha^{s}= \\
& =\left(\mathbf{m}^{o}-\rho \times \mathbf{F}\right) \cdot\left(\delta V^{3} \mathbf{e}_{1}+\delta V^{4} \mathbf{e}_{2}+\delta V^{5} \mathbf{e}_{3}\right)+\sum_{s=1}^{n}\left(\sum_{i=1}^{N} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial \alpha^{s}}\right) \delta \alpha^{s} \tag{2.7}
\end{align*}
$$

On the other hand, $\delta^{\prime} W$ is expressed in terms of generalized forces, referred to the quasicoordinates V^{3}, V^{4} and V^{5} and to the generalized coordinates α^{k}

$$
\begin{equation*}
\delta^{\prime} W=\sum_{k=3}^{5} P_{k}^{\prime} \delta V^{k}+\sum_{s=1}^{n} Q_{s} \delta \alpha^{s} \tag{2.8}
\end{equation*}
$$

Comparing expressions (2.7) and (2.8) we find that the quantities $P_{3}^{\prime}, P_{4}^{\prime}$ and P_{5}^{\prime} are the projections onto the axis $M q^{1} q^{1} n$ of the principal moment of the active forces (applied both to the supporting and the supported bodies) about the contact point M

$$
P_{2+k}^{\prime}=\mathbf{m}^{M} \cdot \mathbf{e}_{k}\left(k=1,2,3 ; \mathbf{m}^{M}=\mathbf{m}^{o}-\boldsymbol{p} \times \mathbf{F}\right), \quad Q_{s}=\sum_{i=1}^{N} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial \alpha^{s}}
$$

Carrying out the above calculations separately for the forces $\mathbf{F}_{i p}$ (and the forces $\mathbf{F}_{i n}$), we obtain that the quantities $\partial U / \partial V^{3}, \partial U / \partial V^{4}, \partial U / \partial V^{5}$, which have the form (2.14) from [1, p. 809] (and the generalized forces $P_{3 n}^{\prime}, P_{4 n}^{\prime}$ and $P_{5 n}^{\prime}$, produced by the non-potential forces $\mathbf{F}_{i n}$), are respectively the projections onto the $M q^{1} q^{1} n$ axis of the principal moment of the active potential forces (the active non-potential forces) about the contact point M. Also $P_{k}^{\prime}=\partial U / \partial V^{k}+P_{k n}^{\prime}(k=3,4,5)$.

For a fixed surfaces $S^{c}(\mathbf{j}=0)$ the equations of motion of the supportion body (2.5) are identical with Eqs (2.12) and (2.13) from [1]. In vector form, these equations are

$$
\begin{align*}
& \frac{d}{d t}\left[\boldsymbol{\Theta}^{o} \cdot \boldsymbol{\omega}+M \boldsymbol{\rho}^{2} \omega-M(\boldsymbol{\rho} \cdot \boldsymbol{\omega}) \boldsymbol{\rho}-2 M\left(r_{C} \cdot \boldsymbol{\rho}\right) \omega+M(\boldsymbol{\omega} \cdot \boldsymbol{\rho}) \mathbf{r}_{C^{+}}\right. \\
& \left.+M\left(\boldsymbol{\omega} \cdot \mathbf{r}_{C}\right) \boldsymbol{\rho}+\mathbf{Q}_{r} \times \boldsymbol{\rho}+\mathbf{K}_{r}^{o}-M(\boldsymbol{\rho} \times \mathbf{j})+M\left(\mathbf{r}_{C} \times \mathbf{j}\right)\right]+ \tag{2.9}\\
& +\stackrel{*}{\boldsymbol{\rho}} \times M\left[\left(\boldsymbol{\rho}-\mathbf{r}_{C}\right) \times \omega+{\stackrel{*}{\mathbf{r}_{C}}}^{o}+\mathbf{j}\right]-\left(M \mathbf{r}_{C}^{*} \times \mathbf{j}\right)+M\left[\boldsymbol{\omega} \times\left(\boldsymbol{\rho}-\mathbf{r}_{C}\right)\right] \times \mathbf{j}=\mathbf{m}^{M}
\end{align*}
$$

Thus, if the motion of the supported bodies ith respect to the supporting body is specified or there are generally no relative motions, we have obtained a closed system of eight differential equations (1.8), (1.10) and (2.5) for determining the generalized coordinates $q^{1}, q^{2}, \vartheta, q_{c}^{1}, q_{c}^{2}$ and the quantities σ, τ, n as functions of time. In general, this system is not closed, and for a complete solution of the problem - to determine the generalized coordinates $q^{1}, q^{2}, \vartheta, q_{c}^{1}, q_{c}^{2}, \alpha^{1}, \ldots, \alpha^{n}$ and the quantities σ, τ, n as functions of time, we must add the equations of motion of the supported bodies (2.4) to Eqs (1.8), (1.10) and (2.5). Omitting the derivation, which can be found in [3, p. 433], we will immediately write Eqs (2.4) in the converted form

$$
\begin{align*}
& \varepsilon_{s}\left(T_{r}\right)=Q_{s}-M\left[(\mathbf{j}+\boldsymbol{\rho} \times \omega)^{*}+\omega \times(\mathbf{j}+\boldsymbol{\rho} \times \omega)\right] \cdot \frac{\partial \mathbf{r}_{C}}{\partial \alpha^{s}}+ \\
& +\frac{1}{2} \omega \cdot \frac{\partial \Theta^{o}}{\partial \alpha^{s}} \cdot \omega-\dot{\omega} \cdot \frac{\partial \mathbf{K}_{r}^{o}}{\partial \dot{\alpha}^{s}}-\omega \cdot \varepsilon_{s}^{*}\left(\mathbf{K}_{r}^{o}\right), \quad s=1, \ldots, n \tag{2.10}
\end{align*}
$$

If the motion of the surface S^{c} is specified, and the set of supported point masses is a rigid body, the equations of motion of supported body will be ($s=1,2,3 ; k=4,5,6 ;[1, \mathrm{p} .811]$ and $[3, \mathrm{pp} .454-458])$

$$
\begin{aligned}
& M_{r} \mathbf{W}_{C_{r}} \cdot \frac{\partial \mathbf{r}_{C_{r}}}{\partial \alpha^{s}}=Q_{s}\left(\mathbf{v}_{0}=\mathbf{j}+\boldsymbol{\rho} \times \boldsymbol{\omega}, \omega_{r}=\sum_{k=4}^{6} \mathbf{e}_{k}^{\prime} \dot{\boldsymbol{\alpha}}^{k}, \boldsymbol{\Theta}^{o}=\boldsymbol{\Theta}_{0}^{o}+\boldsymbol{\Theta}_{r}^{o}\right) \\
& \mathbf{e}_{k}^{\prime} \cdot\left[\boldsymbol{\Theta}_{r}^{c_{r}} \cdot \stackrel{\omega}{\omega}_{r}+\omega_{r} \times \boldsymbol{\Theta}_{r}^{c_{r}} \cdot \omega_{r}+\boldsymbol{\Theta}_{r}^{c_{r}} \cdot \stackrel{*}{\omega}+\boldsymbol{\omega} \times \boldsymbol{\Theta}_{r}^{c_{r}} \cdot \boldsymbol{\omega}+2 \omega_{r} \times\left(\boldsymbol{\Theta}_{r}^{c_{r}}-\frac{1}{2} \mathbf{E} \vartheta_{r}^{c_{r}}\right) \cdot \boldsymbol{\omega}\right]=Q_{k} \\
& \boldsymbol{\Theta}_{r}^{o}=\boldsymbol{\Theta}_{r}^{c_{r}}+M_{r}\left(\mathbf{E} \mathbf{r}_{C_{r}} \cdot \mathbf{r}_{C_{r}}-\mathbf{r}_{C_{r}} \mathbf{r}_{c_{r}}\right)
\end{aligned}
$$

Θ_{0}^{O} is the inertia tensor of the supporting body at the point O, Θ_{r}^{O} is the inertia tensor of the supported body at the point $O, \Theta_{r}^{C_{r}}$ is the inertia tensor of the supported body at its centre of inertia, $\vartheta_{r}^{C_{r}}$ is the is the sum of the diagonal components of the tensor $\Theta_{0}^{C_{r}}, \mathbf{W}_{C_{r}}$ is the absolute acceleration of the centre of inertia C_{r} of the supported body, and ω_{r} is the vector of the angular velocity of the rectangular axes of the coordinates $C_{r} x^{r} y^{r} z^{r}$, connected with the supported body, about the axes $O x y z$.

Proceeding as in [3, p. 159], we obtain the angular momentum \mathbf{K}^{σ} of the system (the supporting body plus the supported points) about the moving pole O in absolute motion (in the case considered by the Lur'yv it was a fixed pole)

$$
\mathbf{K}^{o}=M \mathbf{r}_{c} \times \mathbf{v}_{0}+\boldsymbol{\theta}^{o} \cdot \omega+\mathbf{K}_{r}^{o}
$$

If the pole O is the centre of inertia C, then $\mathbf{K}^{O}=\boldsymbol{\Theta}^{O} \cdot \boldsymbol{\omega}+\mathbf{K}_{r}^{O}$.

We will further determine the angular momentum about the contact point M of the system, consisting of the supporting body and the supported points, in absolute motion about fixed axes $O_{a} x^{a} y^{a} z^{a}$

$$
\begin{aligned}
& \mathbf{K}^{M}=\mathbf{K}^{o}+\mathbf{Q} \times \overline{\mathbf{O M}}=M \mathbf{r}_{C} \times \mathbf{v}_{\mathbf{0}}+\boldsymbol{\Theta}^{o} \cdot \mathbf{\omega}+\mathbf{K}_{r}^{o}+ \\
& +\left[M\left(\mathbf{v}_{0}+\boldsymbol{\omega} \times \mathbf{r}_{C}\right)+\mathbf{Q}_{\mathbf{r}}\right] \times \mathbf{p}, \\
& \mathbf{Q}_{r}=M \mathbf{r}_{C}^{*}
\end{aligned}
$$

Hence, substituting $\mathbf{v}_{0}=\mathbf{j}-\boldsymbol{\omega} \times \boldsymbol{\rho}$, we obtain $\mathbf{K}^{M}=\mathbf{m}^{\prime}$, i.e. $\partial \Theta^{\prime} / \partial \sigma,\left(\partial \Theta^{\prime} / \partial \tau\right), \partial \Theta^{\prime} / \partial n$ are the projections of the angular momentum K^{M} on to the axes to the axes $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$.

I wish to thank D. E. Okhotsimskii for this help

REFERENCES

1. BYCHKOV, Yu. P., The problem of the rolling of a rigid body on a fixed surface. Inzh. Zh., 1965, 5, 5, 803-811.
2. WORONETZ, P., Über die Bewegungsgleichhungene eines starren Körpers. Math. Ann., 1912, 71, $392-403$.
3. LUR'YE, A. I., Analytical Mechanics. Fizmatgiz, Moscow, 1961.

[^0]: \dagger Prikl. Mat. Mekh. Vol. 68, No. 5, pp. 886-895, 2004.
 \ddagger A more complete discussion can be found in the following preprints by the author: Rolling of a rigid body on a moving surface. Russian Academy of Sciences, Moscow, 1995; To the problem of the rolling of a rigid body on a moving surface. Institute of Mechanics, Moscow State University, Moscow, 1998; Rolling of a sphere on a moving plane. Moscow State University, Moscow, 2001.

 0021-8928/\$--see front matter. © 2004 Elsevier Ltd. All rights reserved.
 doi: 10.1016/j.jappmathmech.2004.09.015

